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Abstract

Tracking the development of cities in emerging economies is difficult with

conventional data. Even the commonly-used satellite images of nighttime light

intensity fail to capture the true brightness of larger cities. This paper shows that

nighttime lights can be used as a reliable proxy for economic activity at the city

level, provided they are first corrected for top-coding. We present a stylized model

of urban luminosity and empirical evidence which both suggest that these ‘top

lights’ can be characterized by a Pareto distribution. We then propose a correction

procedure which recovers the full distribution of city lights. Our results show that

the brightest cities account for nearly a third of global economic activity. Applying

this approach to cities in Sub-Saharan Africa, we find that primate cities are

outgrowing secondary cities but are changing from within. Poorer neighborhoods

are developing and sub-centers are emerging, with the side effect that Africa’s cities

are also becoming increasingly fragmented.
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1 Introduction

Cities are hubs of economic activity and productivity. About 4.2 billion people, or 55%

of the world’s population, currently live in urban areas, and developing countries are

urbanizing at a rapid pace (United Nations, 2018). The African continent alone might

add up to a billion people to its urban population by 2050. Many important questions in

development economics and macroeconomics are intimately linked to understanding the

processes driving the concentration of people and economic activity in cities. The lion’s

share of the extant literature is, however, oriented towards cities in advanced economies,

for which ample data are available (Glaeser and Henderson, 2017). Much less is known

about the rising cities of the 21st century, who not only lack comparable data, but are

undergoing such a fast-paced urbanization that existing sources quickly become dated.

Satellite images of Earth are transforming how economists and other social scientists

are tracking human activity and its consequences.1 Nighttime images of light emissions

are now an established proxy for local economic activity (Chen and Nordhaus, 2011,

Henderson et al., 2012, Donaldson and Storeygard, 2016) and have been used in a

variety of innovative applications (e.g. Michalopoulos and Papaioannou, 2013, Hodler and

Raschky, 2014, Alesina et al., 2016, Pinkovskiy and Sala-i Martin, 2016, Lessmann and

Seidel, 2017, Pinkovskiy, 2017, Henderson et al., 2018). They have several advantages

over conventional survey-based data. Night lights are measured uniformly around the

globe, allowing us to bypass discussions over adjustments for exchange rates and regional

price levels. Moreover, the most widely-used data are available as an annual panel from

1992 to 2013 at a resolution of less than a square kilometer.

Our primary objective in this paper is to establish how these data can be used to

reliably track economic activity within and across cities. A serious drawback of the

standard night lights data is that they are top-coded in larger cities. The Operation

Linescan System (OLS)—a part of the US Defense Meteorological Satellite Program

(DMSP)—was designed to pick up dim light sources, but the satellites have a limited

on-board storage capacity and are based on outdated 1970s technology. They record

light intensities as integerized digital numbers from 0 DN (dark) to 63 DN (bright) and

truncate all observations above this limit to save space. The upper end of this scale is,

however, easily reached by the light intensity emitted by a mid-sized city. As a result,

the recorded signal “flatlines” when the satellites encounter bright city lights: the central

business district and the outskirts of larger cities appear to be equally bright in the

truncated data.2

1For reviews of the related literature see Donaldson and Storeygard (2016), who illustrate the
advantages of remotely sensed data in general, and Michalopoulos and Papaioannou (2018), who focus
on the night lights data in particular.

2The data are known to suffer from a variety of other problems, such as bottom-coding (Jean et al.,
2016), overglow or blooming (Abrahams et al., 2018), and geolocation errors (Tuttle et al., 2013). The
new Visible Infrared Imaging Radiometer Suite (VIIRS) has considerably improved sensors, including a

2



The scale of the truncation is sizable. In these so-called ‘stable lights’ data, the urban

centers of large, busy cities, such as New York or London appear to emit as little light

as smaller American or British towns. Our estimates instead suggest that they are more

than an order of magnitude brighter than recorded in the original data. While top-coding

tends to affect developed countries more than their less-developed counterparts, we show

that it is pervasive and distorts the ranking of cities within and across countries. Nearly

all primary cities in Africa and mid-sized cities in Asia hit the top-coding threshold.

Large agglomerations in developing countries, such as Johannesburg or New Delhi, are

affected particularly strongly.

In this paper, we analyze the global distribution of city lights at the pixel level, develop

a new procedure to recover the details of within city activity, and then study the evolution

of cities in Sub-Saharan Africa. We make three distinct contributions to the literature:

First, we argue that it is natural to characterize the distribution of the world’s

brightest lights, which we dub ‘top lights’, by a Pareto distribution. We provide

theoretical and empirical evidence supporting this claim. In terms of theory, we present

a stylized model of light emissions from cities, combining standard assumptions on the

evolution of city sizes (e.g. Zipf’s law) with regularities in urban scaling. The model

gives rise to a power law in light emissions above a certain threshold. Our empirical tests

based on auxiliary satellite data also strongly favor a heavy-tailed Pareto distribution in

top lights with an inequality parameter comparable to top incomes or wealth in the US

(e.g. see Atkinson et al., 2011).

Our second contribution is methodological. Building on the Pareto property of top

lights, we develop a top-coding correction for the truncated data. To do so, we combine

desirable features from the DMSP-OLS data set with observations from the less frequently

available radiance-calibrated satellite data. Our correction procedure involves a geo-

referenced ranking method at the pixel level. Based on this method, we present a new

annual panel of nighttime lights over the entire period from 1992 to 2013.3 After the

discontinuation of the DMSP-OLS series in 2013, nighttime lights are now observed by

the technically superior Visible Infrared Imaging Radiometer Suite (VIIRS) which does

not suffer from top-coding. Two annual VIIRS cross-sections (2015 and 2016) have now

been made available and this series allows researcher to accurately track the development

of cities today and in the future. Our pixel-level panel for the 22-year period until 2013,

on the other hand, should be prove to be useful to researchers interested in studying

development of cities or other small geographies in the recent past.

We find that our correction makes a substantial difference in virtually all major cities.

The top 4% of pixels—the average share of pixels which we correct globally—account for

day-and-night band which records light intensity after midnight since late 2011. While these data will
become more important in the future, the DMSP-OLS series is the only series covering the period from
1992 to 2013.

3Our corrected images can be downloaded from www.lightinequality.com.
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Figure 1 – Selected cities in 1999, stable lights and corrected lights
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(b) London
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(c) New Delhi
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(d) Johannesburg
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Notes: Comparison of the light intensities (DN) recorded by the stable lights and our corrected lights
in four major cities. The left panel show the light intensity along a longitudinal transect through
the brightest pixel in each city. The middle panel shows a map based on the stable lights data
from satellite F121999. The right panel shows the same map using the corrected data presented in
this paper. Both data have been binned and the color scales were adjusted so as to be comparable.
Dashed lines indicate the transect path.
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32% of the total brightness observed on Earth. This is nearly double their original share,

underlining the contribution of big cities to global economic activity. As a result, the

spatial distribution of economic activity turns out to be much less equal.

Figure 1 illustrates the problem and the effectiveness of our solution. It shows that

the stable lights data are unable to differentiate among the light intensities originating

from different locations within New York, London, New Delhi or Johannesburg. Across

these four major cities, the average light intensity differs little and the sum of light in

each city is largely determined by the urban extent. After our correction, we can clearly

identify urban cores which are much brighter than the outskirts. This pattern carries

over to other subnational aggregates. The corrected data also turn out to be a better

predictor of regional economic activity in rich and densely populated countries, such as

Germany.

Third, we use this new data to analyze the relative growth rates and internal structure

of cities in Sub-Saharan Africa. The subcontinent is still the world’s poorest region and

urbanizing at a considerably lower level of development than other regions have in the

past (Glaeser, 2014). Economic activity in Sub-Saharan Africa is heavily concentrated in

primate and coastal cities due to a combination of factors, including high transport costs

(Storeygard, 2016), outward-oriented colonial infrastructure (Jedwab and Moradi, 2016,

Bonfatti and Poelhekke, 2017), urban bias (Lipton, 1977, Ades and Glaeser, 1995), the

limited reach of national institutions (Michalopoulos and Papaioannou, 2014), climate

change (Barrios et al., 2006), natural resource booms (Gollin et al., 2016), and the urban

mortality transition (Jedwab and Vollrath, 2019). This structure is neither optimal nor

static. On the one hand, excessive primacy in the city size distribution has been linked to

the prevalence of slums and slow economic growth (Henderson, 2003, Castells-Quintana,

2017). On the other hand, recent studies suggest that Africa’s secondary cities might be

gaining ground vis-à-vis primate cities and playing an important role in poverty reduction

(Henderson et al., 2012, Christiaensen and Todo, 2014, Christiaensen and Kanbur, 2017).

Official numbers remain elusive though, so it remains an open question if secondary cities

in Africa are, in fact, rising.

Our application shows that Africa’s largest cities are maintaining their dominant

position but are changing from within. Primary cities in Sub-Saharan Africa were

growing faster than secondary cities over the period from 1992 to 2013, suggesting they

are continuously absorbing growing populations in informal settlements (in line with

Jedwab and Vollrath, 2019). However, as these cities grow, we observe two distinct

developments: light inequality narrows and the within-city distribution of light becomes

more fragmented. We interpret this finding as an indication that public services are being

expanded throughout cities, while increasing fragmentation implies the formation of sub-

centers with a continued lack of connectivity to other neighborhoods. Disconnectedness

and long travel times, in turn, limit productivity and economies of scale (Lall et al., 2017,

5



Venables, 2017). Both of these findings would have been difficult to establish without the

correction developed in this paper. In fact, the stable lights data indicate that secondary

cities outperform primate cities during the period of study.

More broadly, this paper takes on the challenge of linking the pixel-level distribution

of economic activity as observed from high resolution satellites to economic theory and

empirical laws in urban economics. We argue that this approach leads to a better

understanding of the features these data should have and at what scale they will be

particularly useful. This perspective shows that the influence of top-coding is small when

lights are aggregated to the country level but then rises steeply as the size of the unit

of observation decreases. Moreover, as we demonstrate below, the impact of top-coding

increases over time as countries and cities develop. Our application shows that even

in Africa, which is still the poorest continent with the lowest electrification rates, top-

coding makes a big difference. As the ultimate test of our argument, this suggests that

top-coding will matter as least as much in other continents and regions. By providing a

solution to this problem, we hope to further encourage researchers to use these historical

data in innovative ways.

The remainder of this paper is organized as follows. Section 2 provides some

background on the nighttime lights data and the extent of top-coding around the world. In

Section 3 we present theoretical and empirical evidence in favor of a Pareto distribution in

top lights. Section 4 outlines our correction procedure. Section 5 contains the application

of our top-coding corrected data to African cities. Section 6 concludes. An Online

Appendix contains the accompanying material, such as additional theoretical results,

supplementary details on the data and summary statistics, a benchmarking exercise with

German regional data, and a battery of robustness checks.

2 Top-coding around the world

The DMSP-OLS satellites circled the earth for several decades with the primary purpose

of detecting clouds. As a byproduct, they measured night lights in the evening hours

between 8:30 and 10:00 pm local time around the globe every day. The recorded data

were pre-processed by the National Geophysical Data Center at the National Oceanic

Administration Agency (NOAA) and averaged over cloud-free days.4 The result are

images of annual ‘stable light’ intensities from 1992 to 2013 for every 30 by 30 arc seconds

pixel of the globe (about 0.86 square kilometers at the equator).5

We cannot use the truncated stable lights data to gauge the extent of top-coding.

4This was done to remove observations of cloudy days and sources of lights which are not man-made,
such as auroral lights or forest fires. This process removed a lot of dim light sources. NOAA also made
a series of unfiltered lights available, which we later use for the delineation of urban extents.

5In our analysis, we always exclude areas close to the polar zones (65 degrees south and 75 degrees
north latitude) known to be influenced by ephemeral lights and remove areas affected by gas flaring.
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Fortunately, for seven years, additional satellites were orbiting Earth with sensor settings

that were less sensitive to light. NOAA generated a series of ‘radiance-calibrated’ lights

by combining the stable lights data from normal flight operations with auxiliary data

obtained from these low amplification sensors (Elvidge et al., 1999, Ziskin et al., 2010,

Hsu et al., 2015). The resulting series is free of top-coding and has no theoretical upper

bound.6 The radiance-calibrated data can be used directly for cross-sectional analyses.

Henderson et al. (2018), for example, use the 2010 version of this data in their study of

the global spatial distribution of economic activity. Their measured values are, however,

only of limited use for comparisons over time. Apart from their sparse temporal coverage,

the radiance calibration process introduces a substantial amount of noise. For example,

there are pixels whose radiance-calibrated values increase from a value of about 200 to 400

and back to 150 across the available years, without any underlying economic rationale.

By contrast, the ranks of pixels in the radiance-calibrated data are considerably more

stable over time than their absolute values, reaching correlations of 0.90-0.95 for adjacent

years. For this reason, we rely on the shape of the distribution and the ranks of the

radiance-calibrated pixels, rather than their precise values, in the pixel-level correction

later on. This way, we combine desirable features from both the stable lights and the

radiance-calibrated data. Online Appendix A compares summary statistics of the stable

lights and radiance-calibrated data over time and discusses technical reasons for the large

fluctuations we observe in the latter.

While the literature typically aggregates the pixel level data to some study area of

interest (e.g. grid cell, city or region), we conduct our analysis at the native resolution

of 30 arc seconds to avoid averaging over top-coded areas. On the global scale, this is

a formidable task.7 To ease the computational burden, we conduct large parts of the

analysis with a spatial random sample of 10% of pixels within all countries that have a

landmass larger than 500 km2 (but later apply the correction to the full data). The sample

contains more than two million pixels per year located in 194 countries or territories.

We still have to define where top-coding begins before we can assess its impact. Since

the scale goes up to 63 DN, it seems natural to assume that this would be the appropriate

threshold. There are, however, compelling technical and statistical arguments suggesting

that the threshold should be much lower. Each value we observe in the annual data was

averaged several times. In addition to averaging the high-resolution data on-board of

the satellites,8 the daily observations were averaged again in the process of generating an

6Note that in spite of calibration issues, Hsu et al. (2015, p. 1865) point out that, within the same
year, the “DNs below saturation of the Stable Lights product and DN EQs of merged fixed-gain imagery
can be directly compared to each other.”

7Every image contains more than 700 million pixels, about a third of which are on land and half of
which are lit.

8Abrahams et al. (2018) provide a detailed explanation of how the DMSP-OLS satellites processed
the data before transmitting them to Earth, including how this lead to geolocation errors, blurring, and
top-coding. The satellite first truncated individual pixels at a much finer resolution and then aggregated

7



Table 1 – Summary statistics of global lights in 2010

World USA Brazil Israel South Africa China Netherlands

Panel a) Stable lights (from 0 to 63 DN)

Mean 17.55 18.35 17.97 31.61 15.16 17.72 35.11
Standard deviation 15.35 16.90 15.45 21.49 15.29 15.50 16.09
Maximum 63.00 63.00 63.00 63.00 63.00 63.00 63.00
Spatial Gini 0.4258 0.4486 0.4165 0.3858 0.4604 0.4260 0.2637
Pixels 2,154,889 427,922 60,310 2,060 18,369 165,521 6,549

Panel b) Radiance-calibrated lights (from 0 to ∞ DN)

Mean 19.04 23.14 19.76 46.29 15.18 19.97 37.83
Standard deviation 44.35 53.42 41.76 82.70 29.99 46.71 44.08
Maximum 2109.67 1710.59 646.84 914.14 575.22 1862.04 435.63
Spatial Gini 0.6045 0.6613 0.5995 0.6505 0.5941 0.6093 0.4880
Pixels 2,154,889 427,922 60,310 2,060 18,369 165,521 6,549

Panel c) Comparison of top-coded pixels

Share = 63 DN 0.0176 0.0340 0.0228 0.1019 0.0206 0.0111 0.0299
Share ≥ 55 DN 0.0576 0.0847 0.0588 0.2447 0.0387 0.0597 0.1709
Radiance-cal. mean 142.05 153.77 143.36 135.70 113.27 143.96 107.92

Notes: The table reports summary statistics using the stable lights in Panel (a) and the radiance-
calibrated lights in Panel (b). Panel (c) compares both sources at the pixel level. The top-coding
shares are based on the stable lights data. The last line reports the radiance-calibrated mean of all
pixels with saturated values ≥ 55 DN. All three panels are based on a 10% sample of all lit pixels,
where each pixel is 30× 30 arc seconds. The stable lights data are averaged across the whole year,
while the radiance-calibrated data come from satellite F16, which recorded these data from January
11 to December 9, 2010.

annual image. Any pixel measured with a value of 63 on some, but not all, cloud-free

days of a given year would have ended up with a yearly average below 63. Counting the

share of pixels with the highest value, as is common practice, therefore only captures

locations which are top-coded every could-free day of the year.

Our analysis shows that many pixels with DNs of 62, 61, down to the mid-50s,

are subject to implicit top-coding and should be considerably brighter than they are

recorded in the data (see Online Appendix B). NOAA even suggests that the first—albeit

faint—influence of top-coding starts at much lower values.9 Throughout this paper, we

will conservatively set the top-coding threshold to 55 DN in order to not overstate its

impact. Note that our correction approach will work with any sufficiently high top-coding

threshold.

Table 1 compares the stable and radiance-calibrated lights across the globe in 2010—

the latest year where both data sources are available. The first column already shows that

those to a coarser resolution. Each night the origin shifted a bit, recreating a finer resolution. Finally,
these data were aggregated and averaged again at NOAA when the annual composites were created.

9Since “the OLS does onboard averaging to produce its global coverage data, saturation does not
happen immediately when radiance reaches the maximum level. On the contrary, as the actual radiance
grows, the observed DN value fails to follow the radiance growth linearly, causing a gradual transition
into a plateau of full saturation” (Hsu et al., 2015, p. 1872).
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the difference in scale is striking. The brightest radiance-calibrated pixel in our sample is

more than 30 times brighter than the end of the stable lights scale. This is reflected in a

standard deviation which is three times higher and a spatial Gini coefficient of inequality

in lights which differs by 18 percentage points. In 2010, about six percent of all stable

lights pixels are top-coded at 55 DN or higher, while their unsaturated counterparts

are—on average—more than twice as bright.

Figure 2 – Share of top-coded pixels and country characteristics

(a) GDP per capita
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Notes: Illustration of the systematic bias introduced by top-coding. The data are a 10%
representative sample of all non-zero lights in satellite F182010. GDP and population data are
from the World Development Indicators.

Top-coding affects all countries but not uniformly. Countries which are i) highly

developed, ii) small and iii) urbanized are more strongly affected by top-coding than

others, but there is substantial heterogeneity. The remaining columns of Table 1

document this diversity in a selection of countries. Larger middle income countries,

like China, Brazil or South Africa, have a top-coding share comparable to the world

average. Mature economies of different sizes and population densities, such as the US,

Israel or the Netherlands, have greater top-coding shares from 8% up to 25%. In Israel

and the Netherlands, a high average light intensity coupled with a high incidence of top-

coding in the stable lights data generate such an artificially low spatial Gini coefficient

that it rises by more than 20 percentage points in the radiance-calibrated data. Figure 2

illustrates these patterns across all countries in the sample and highlights the exceptions.

For example, the overwhelming majority of pixels in high income, high density city states,

such as Singapore, Hong Kong, or Bahrain, are top-coded. Top-coding is also particularly

pronounced in low income countries with a low average population density but large

primate cities, such as Egypt. Top-coding is thus a complex function of the spatial

equilibrium, that is, the size, density, number and location of cities in each country.
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3 A Pareto distribution in top lights

Our correction approach rests on the claim that a Pareto distribution is a reasonable

description of top lights. The Pareto distribution is an often-found empirical feature of

data used in physics, biology and many other sciences (see Newman, 2005), including the

distribution of top income or wealth (e.g. Piketty, 2003, Atkinson et al., 2011) and the

size distribution of cities as delineated via night lights (Small et al., 2011). Yet, it has so

far not been established for the upper tail of the distribution of night light intensities.

We approach this issue in two ways. We first present a tractable model of light

intensities within and across cities, showing that the density of top lights at the pixel

level is Pareto, or can at least be closely approximated by a Pareto density. The model is

not meant to be taken literally but only to illustrate that a Pareto density can be derived

from first principles. Certain assumptions, such as city monocentricity, make the model

analytically tractable but are unrealistic. This is also why we do not rely on the model in

the correction procedure. In the second part of this section, we make the empirical case

in favor of a power law in top lights based on the radiance-calibrated data and subject it

to a battery of tests.

3.1 A stylized model of city lights

When modeling the distribution of the lights around the world, our starting point is the

size distribution of cities in terms of population. It is well known that combining Gibrat’s

(1931) law of homogeneous growth of cities with a lower bound of city sizes leads to a

Pareto or Zipf distribution of large cities (Gabaix, 1999, Eeckhout, 2004). Zipf’s law

predicts that city ranks are inversely proportional to their size; for instance, the biggest

city in the U.S. (New York) has twice the population of the second-ranked city (Los

Angeles) and three times the population of the third-ranked city (Chicago).

Numerous studies have provided empirical evidence for this regularity based on U.S.

cities or metropolitan areas (Gabaix and Ioannides, 2004, Rozenfeld et al., 2011, Ioannides

and Skouras, 2013). Despite heterogeneity in the rank-size parameter in other countries

(Rosen and Resnick, 1980, Soo, 2005), it is generally considered a good approximation of

the size distribution of large cities (Luckstead and Devadoss, 2014) and evidence in its

favor becomes stronger when cities are defined as “natural” agglomerations as opposed

to administrative boundaries (e.g. see Small et al., 2011, Jiang and Jia, 2011).

Assumption 1. The size distribution of big cities in terms of their population x is Zipf,

i.e. a Pareto distribution with shape parameter η = 1 above some threshold xc.

The CDF of the number of cities with population x is

F (x) = 1−
(xc

x

)η

=

∫ x

xc

η
xη
c

xη+1
dx =

∫ x

xc

xc

x2
dx. (1)
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Cities have a certain area extent in which they house their population. The urban

allometry literature (Stewart, 1947, Jones, 1975), which deals with the scaling of human-

made structures within cities, links the two quantities in the following way:

Assumption 2. The population x and the area s of a city are proportional, i.e. x ∼ sφ.

It is typically assumed that 1 < φ < 2, so that larger cities not only spread out on the

plane by converting the surrounding agricultural land but also grow in terms of height

(Batty and Longley, 1994). Bettencourt (2013), for example, motivates scaling laws based

on a network theory of human interactions using the parameter value φ = 1.5.

To derive the distribution of individual pixels y within cities, we yo model the shape

of cities. The standard assumption in the workhorse model of urban economics is

monocentricity (Mills, 1967, Amson, 1972, Desmet and Rossi-Hansberg, 2013).

Assumption 3. Cities are monocentric and of circular shape. They consist of rings of

unit width from the center to the outskirts.

Depending on its area s and therefore its population x, each city has r = π−1/2x1/(2φ)

rings.10 Integration by substitution yields the CDF of the number of rings per city11

F (r) = 2φxcπ
−φ

∫ r

r̃

r−2φ−1dr =







0 for r < r̃

1− xcπ
−φr−2φ for r >= r̃

(2)

with r̃ = π−1/2x
1/(2φ)
c . Its density

f(r) = xcπ
−φr1−2φ for r >= r̃ (3)

follows a power law with a shape parameter 2φ − 1 > η = 1 for φ > 1. The higher

shape parameter implies that the distribution of rings has fewer extreme values than the

distribution of city sizes in terms of their population.

Each city with r rings consists of πr2 rectangular pixels of unit size. The pixels are

located at distance d from their respective city center. There are two opposing effects

governing how the global number of pixels depends on this distance: i) within a given

city, the number of pixels increases linearly with d because rings farther from the center

contain more pixels, and ii) the larger the distance d from the city center, the fewer cities

of that size are left, namely only the cities with r ≥ d rings.

Dividing the absolute amount of pixels at each distance d by the total number of

10For simplicity of exposition, we suppress the proportionality constant in x ∼ sφ and assume x = sφ.
11Online Appendix C derives this result.
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pixels yields their global density

f(d) =







2π φ−1
φ
x
−1/φ
c d for d < d̃

2π1−φ φ−1
φ
x
1−1/φ
c d1−2φ for d ≥ d̃

(4)

with d̃ = π−1/2x
1/(2φ)
c .12

To derive the global density of luminosity f(l), we require a last assumption on how

light intensity within a city varies with the distance to the center d. As the within-city

light distribution has not yet been modeled explicitly, we resort to standard models

of population density. Light intensity is the product of population and income per

capita. Differences in light intensity within countries are mostly driven by variations

in population density (Henderson et al., 2018), which we take as a justification to focus

on the population density gradient.

A popular choice in the literature is the negative exponential function, that is, p(d) =

P0 exp(−γd) where p(d) is the population density at distance d from the city center,

P0 ≥ p is the density at the center, and γ > 0 is a decay parameter so that the city

periphery is more sparsely populated or, in our case, lit. The negative exponential can

be motivated on the basis of the standard Alonso-Muth-Mills model (Brueckner, 1982).

Empirical studies have found γ ≈ 0.15 on average for large world cities (Bertaud and

Malpezzi, 2014). An alternative to the exponential distribution is the inverse power

function, which was originally proposed for gravity models of traffic flow (Smeed, 1961,

Coleman, 1964, Batty and Longley, 1994). It is defined as p(d) = P0d
−a with d > 0 and

shape parameter a > 0.

Both functions are qualitatively similar for intermediate distances, with the inverse

power function slightly below the negative exponential. They differ from each other in the

city center, where the inverse power function has higher and more sharply declining values,

as well as in the outskirts, where it predicts a higher density. A greater concentration at

the center makes the inverse power function particularly suitable for business floor-space

models (as recommended by Zielinski, 1980). At the same time, its tail is known to fit the

urban fringe well (Parr, 1985). Since we are interested in lights rather than population

density, we would like to capture both the very bright central business districts in most

cities and the more dimly lit but significant suburban sprawl in the outskirts, which

typically features prominently in the footprint of city lights (e.g. see Small et al., 2011).

Modeling light densities within cities with an inverse power function better reflects the

light gradient and turns out to be analytically appealing. Hence, it serves as our baseline

case. Note that using the negative exponential function also leads to an expression for

the distribution of top lights which (under certain conditions) can be approximated by a

12Online Appendix C derives this result.
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Pareto density.13

Assumption 4. Within cities, the light density l(d) follows an inverse power function

l(d) = L0d
−a for d > 0 with L0 > l as the maximum luminosity at the center and a > 0

as the decay parameter.

Applying the variable transformation from the inverse power function to the pixel

density in eq. (4) yields

f(l) =







2π1−φ φ−1
φ
x
1−1/φ
c

(

L0/l
)(1−2φ)/a

for 0 < l ≤ l̃

2π
φ− 1

φ
x−1/φ
c

︸ ︷︷ ︸

c

(

L0/l
)1/a

for l̃ < l ≤ L0,
(5)

where l̃ = L0π
a/2x

−a/(2φ)
c .

Restricting our attention to the upper part of the light distribution from l̃ onwards,

we can establish our key result:

Result 1. Based on assumptions 1–4, top lights above threshold l̃ follow the Pareto

distribution f(l) = c
(

L0/l
)1/a

with shape parameter 1/a.

Using a grid-search, we find that for a = 0.7 the inverse power function comes closest

to the negative exponential function of the empirical parameter γ = 0.15.14 A back-of-

the-envelope calculation thus implies a Pareto shape parameter around one and a half.

Note that we estimate this parameter using auxiliary data in the next subsection.

In sum, a limited set of four assumptions allows us to analytically derive a Pareto

distribution in top lights, with shape parameter 1/a, maximum luminosity L0, and a

multiplicative constant. We believe that this is an important insight, even though the

model is very stylized. Note that the correction we propose later on only relies on

the Pareto property and does not require any of the simplifying assumptions, such as

monocentricity or a particular population density gradient. In fact, part of our application

below investigates how sub-centers have been forming in African cities.

There are alternative ways to characterizing the distribution of top lights. We could,

for instance, consider the truncation purely as a statistical issue of tail probabilities and

use extreme value theory to derive their distribution. Reassuringly, this approach also

points towards a Paretian distribution of top lights (see Online Appendix D).

13Online Appendix C derives this result.
14The curve-fitting was conducted on the domain for d from 1 to 50, minimizing the squared error

between the negative exponential function with γ = 0.15 and the inverse power function with a ∈ [0.05, 2].
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3.2 Empirical tests

Empirical tests for a Pareto tail were popularized in economics by the literature on top

incomes (e.g. Piketty, 2003, Atkinson et al., 2011) and city sizes (e.g. Rosen and Resnick,

1980, Gabaix, 1999, Gabaix and Ioannides, 2004, Rozenfeld et al., 2011). These tests

usually exploit particular properties of the Pareto distribution.

Recall that data y which is Pareto distributed above a certain threshold yc has the

probability density function, f(y) = αyαc y
−α−1, where α is the relevant shape parameter

and only takes on positive values. The survival function, 1 − F (y) = (yc/y)
α, gives the

probability that the random variable Y is larger than the given value y. This maps directly

to our model from the previous section, only that we now denote the light intensity at

the pixel level by y and the shape parameter by α = 1/a to simplify the exposition.

Visual inspection: Following Cirillo (2013), we first visually check whether our data

are Pareto distributed, before estimating shape parameters that are only meaningful

if this condition is fulfilled. We use the seven radiance-calibrated satellites to analyze

the shape of the missing tail in the stable lights data. Figure 3 shows a discriminant

moment ratio plot with the coordinate pair of the coefficient of variation (i.e., standard

deviation divided by the mean) on the x-axis and skewness on the y-axis (Cirillo, 2013).

Each parametric distribution has its particular curve of feasible coordinates, so that the

relevant part of the plane can be divided into a Pareto area, a lognormal area, and a gray

area possibly belonging to both. This type of plot provides a more reliable indication

of the Paretian nature of the data than more traditional graphical devices (such as Zipf

plots shown in Online Appendix E).

The visual evidence in favor of a Pareto distribution is strongest for higher thresholds.

For the top 4% of pixels in panel (a), all but one satellite are located in the area of

indeterminacy.15 This ambiguity mirrors similar findings in the city-size literature, where

both the Pareto and the log-normal with a large standard deviation generate tails which

are virtually indistinguishable (Eeckhout, 2004, 2009).16 For smaller percentages, such

as the top 1% in panel (b), the evidence in favor of a Pareto distribution becomes much

stronger. All but one satellite are in the Pareto area, far from the lognormal area and

15The only exception is satellite F16 in 1996 which is based on considerably fewer cloud-free overpasses
than later years. It is the earliest and dimmest of the radiance-calibrated products. Its highest values
are far below those in subsequent years and the data contain many ties. Online Appendix A contains
the relevant summary statistics for the radiance-calibrated data.

16It is well-established in the literature on city sizes and top incomes that the Pareto distribution is
often only a good representation for the very top of data, with a moderately decreasing fit as the threshold
decreases. Our data suggest that a Pareto distribution of top lights remains a good approximation down
to the top 10% of the data. This is more than sufficient for our purposes, since we only consider 3% to 5%
of all pixels to be top-coded in any given year. Indeterminacy vis-à-vis the lognormal occurs is common
in this literature as well, since “the tail of a lognormal is indistinguishable from the Pareto under certain
circumstances, [so that] the researcher who is interested in the tail properties of a size distribution can
choose which one to use” (Eeckhout, 2009).
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Figure 3 – Discriminant moment ratio plots
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Notes: The panels show discriminant moment ratio plots (Cirillo, 2013). The input data are a 10%
representative sample of all non-zero lights in the radiance-calibrated data at the pixel level, where
each pixel is 30× 30 arc seconds.

those of other thin-tailed distributions.

We take a closer look at the issue of lognormal versus Pareto in Online Appendix E.

We conduct several goodness-of-fit tests, where we compare the empirical distribution of

the radiance-calibrated data to the best-fitting theoretical distribution. The findings are

unambiguous. The Pareto distribution mimics the distribution of top lights much better

than the lognormal (with R2s close to unity). Hence, we conclude that our data are best

characterized by a heavy-tailed Pareto distribution.

Log-rank regressions: Log-rank regressions are a popular approach to estimating

the Pareto shape parameter and firmly rooted in urban economics. They are based

on the following approximation. For Pareto-distributed observations yi, i = 1, ...N ,

with the survival function given above, we have rank(yi) ≈ Nyαc y
−α
i , or, in logarithms

log rank(yi) − logN ≈ α log yc − α log yi. Gabaix and Ibragimov (2011) show that

directly estimating this relationship systematically underestimates the true coefficient

and standard error. However, once the ranks are shifted by minus one-half and the

standard errors are adjusted, rank regressions consistently estimate the parameters of

interest and turn out to be relatively robust to deviations from power laws.

Table 2 reports the corresponding results. We separately estimate the Pareto shape

parameter for each of the radiance-calibrated satellites and for the top 5% to 1% of

the data. The point estimates are relatively stable for the top 3% to 5% of lights—
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Table 2 – OLS rank regressions

Year 1996 1999 2000 2003 2004 2006 2010 Average

Panel a) Top 5%

Pareto α̂ 1.3122 1.2993 1.2471 1.4482 1.4484 1.4790 1.4453 1.3828
(0.0060) (0.0054) (0.0054) (0.0065) (0.0063) (0.0066) (0.0062) [0.0932]

Observations 96,685 116,858 106,914 100,095 106,899 99,487 107,745 –

Panel b) Top 4%

Pareto α̂ 1.3514 1.4000 1.3594 1.5890 1.5837 1.6250 1.5963 1.5007
(0.0069) (0.0065) (0.0066) (0.0079) (0.0077) (0.0081) (0.0077) [0.1236]

Observations 77,348 93,484 85,482 80,075 85,489 79,590 86,196 –

Panel c) Top 3%

Pareto α̂ 1.4270 1.5665 1.5444 1.7667 1.7876 1.8423 1.8330 1.6811
(0.0084) (0.0084) (0.0086) (0.0102) (0.0100) (0.0107) (0.0102) [0.1654]

Observations 58,011 70,115 64,111 60,058 64,134 59,692 64,647 –

Panel d) Top 2%

Pareto α̂ 1.6714 1.8614 1.9314 2.0737 2.0976 2.1751 2.2160 2.0038
(0.0120) (0.0122) (0.0132) (0.0147) (0.0143) (0.0154) (0.0151) [0.1932]

Observations 38,673 46,742 42,740 40,039 42,756 39,794 43,097 –

Panel e) Top 1%

Pareto α̂ 2.2300 2.4350 2.4470 2.5914 2.5046 2.7075 2.8641 2.5399
(0.0227) (0.0225) (0.0237) (0.0259) (0.0242) (0.0271) (0.0276) [0.2052]

Observations 19,337 23,373 21,372 20,020 21,377 19,898 21,551 –

Notes: The table reports the results of OLS rank regressions with log (rank(yi)− 1/2)− logN as the
dependent variable. Asymptotic standard errors computed as (2/N)1/2α̂ are reported in parentheses
(see Gabaix and Ibragimov, 2011). The data are a 10% representative sample of all non-zero lights
in the radiance-calibrated data at the pixel level, where each pixel is 30× 30 arc seconds. The last
column reports the point average of the seven satellites and its standard deviation in brackets.

approximately the range of shares we will later replace each year—and then rise as smaller

percentages are considered.17 The last column reports the simple average of the estimated

coefficients. Somewhat remarkably, the average Pareto shape parameter is about one and

a half for the top 4% of lights—not far from our model-based guesstimate. Moreover,

averaging all 21 coefficients in panels (a) to (c) also yields a central estimate of about one

and a half. Note that there is only limited variation over time at the lower thresholds,

apart perhaps from a small discontinuity in the early 2000s. Our range of parameter

estimates implies inequality comparable to the top tail of the U.S. income or wealth

distribution (Piketty, 2003, Atkinson et al., 2011). Top lights are considerably more

equally distributed than city sizes, just as predicted by the model in the previous section.

We provide an array of additional robustness checks in Online Appendix E and F. Our

main findings are robust to i) using the Hill estimator instead of OLS rank regressions,

17In theory, with Pareto-distributed data, conducting the estimation with the portion of the
distribution above a higher threshold yhc > yc should lead to the same estimated α. In practice, this will
often not hold exactly and the results for tail regressions are known to depend on the precise threshold
used (see for instance Rosen and Resnick, 1980).
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ii) estimating unrestricted rank regressions, which are another way of testing for a Pareto

distribution, and iii) using top-coding free data from the new VIIRS satellites, whose first

available year is 2015. The VIIRS satellites are technologically superior and recorded at

a much finer resolution. Reassuringly, they are either as indicative of a Pareto tail in top

lights as the radiance-calibrated data, or provide even stronger evidence in its favor, such

as linear Zipf plots.18

4 Correcting for top-coding

We propose a simple correction procedure inspired by the methods used in the top incomes

literature (Piketty, 2003, Atkinson et al., 2011). All lights below the top-coding threshold

are unaltered, while those above are replaced by a Pareto-distributed counterpart. An

appealing feature of this approach is that it keeps the overwhelming majority of the data

intact and replaces only a small but highly influential fraction of pixels.19

Our theoretical arguments and empirical tests suggest a Pareto parameter around one

and a half. Recall that a plausible parameterization of our model also implies α = 1/0.7 ≈
1.43 and our empirical estimates inferred from the radiance-calibrated data are centered

on one and a half. We use this fixed value as a rule-of-thumb parameter. Of course, our

procedure is not predicated on a particular value, nor does it require the parameter to be

constant over time. However, we do not detect an unambiguous trend indicating that the

distribution of top lights has become more equal over time. As will become clear shortly,

assuming a constant parameter value still allows for significant variation over time as

particular pixels i) cross the top-coding threshold and ii) achieve a higher rank vis-à-vis

other pixels. Cities can thus become brighter in absolute terms and grow relative to other

cities after the correction.20

18The estimated shape parameters are a bit higher for top shares around 3% to 5% but then also
appear to be more stable in the upper tail. Since the VIIRS data are five years after the most recent
radiance-calibrated image and have a different overpass time, it is difficult to identify the source of these
slight discrepancies.

19There have been a number of attempts to correct the stable lights data in the remote sensing
literature. One type of corrections is based on cubic pixel-level regressions (see e.g. Letu et al., 2012),
which is a heavily parametric approach and usually assumes that light emissions were constant over some
area or period. An alternative approach uses land cover and vegetation data to non-linearly transformed
night lights. Zhang et al. (2013), for example, define an index which combines night lights with a
Normalized Difference Vegetation Index (NDVI). While this recovers some of the city-wide variation in
light, the conflation of lights with NDVI data is not ideal for a number of reasons: i) the original scale
of the stable lights data is lost, ii) all values—not just the top-coded data points—are being adjusted,
and iii) researchers may wish to use the NVDI and other land cover data as explanatory or dependent
variables and could reasonably worry about mechanical correlations introduced by this approach. All
of these studies agree that the radiance-calibration method of Hsu et al. (2015) is ideal in terms of its
spectral response and use it as a benchmark. None of these studies directly combine the two data sources.

20In additional analyses, we assigned the seven satellite-specific estimates to the adjacent stable light
satellite-years. This approach gives very similar results overall, albeit with more jumps. Country-specific
estimates also lead to similar results, although comparatively darker and poorer countries experience
larger corrections. By using the same parameter for the whole world, we deliberately follow an agnostic
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Our preferred approach is a pixel-level replacement in which we directly substitute the

top-coded lights by their corresponding quantile from the theoretical Pareto distribution.

Correcting the raw data has the advantage that they can then be flexibly aggregated to the

unit of interest. Another option is to analytically correct the relevant summary statistics,

such as mean lights and spatial Gini coefficients. We provide closed-form solutions

that are particularly useful for back-of-the envelope calculations in Online Appendix G.

Exclusively correcting the summary statistics, however, limits the potential applications

and is not sufficient when the actual locations of the top-coded pixels matter.

A remaining challenge is to geo-reference the Pareto quantiles so that the brightest

pixels actually end up in the centers of dense urban agglomerations. It turns out that

there is a straightforward solution. Since we know the exact location of all pixels, we

can rank them according to their radiance-calibrated values from the nearest year and

distribute the highest values from the Pareto distribution in the same manner. Working

with ranks avoids importing the artificial variability of the radiance-calibrated satellites

but preserves a crucial part of the data structure.21 Our algorithm for replacing top-coded

pixels with their quantile counterpart from Pareto distribution works as follows:

(1) For each of the 34 satellite-years t of stable lights data, calculate the number Nt of

pixels ≥ 55 DN to be replaced.

(2) Produce a ranking of these Nt pixels based on the radiance-calibrated data

associated with the same satellite-year or the data from the closest year.22

(3) Generate Nt theoretical values from a truncated Pareto distribution with the rule-

of-thumb α = 1.5, the top-coding threshold yc = 55, and upper bound H = 2000.

(4) Replace the Nt stable lights pixels ≥ 55 so that the stable lights pixel with the i-th

highest rank from (2) is replaced by the i-th highest theoretical value.

In other words, our procedure combines the desirable features of the stable lights

(annual availability and measurement for all non-top-coded values) with those of the

radiance calibrated lights (distributional shape of the top as well as stability of the ranks).

We apply this procedure to every stable lights satellite image over the entire period from

1992 to 2013. This is the data which we use in the subsequent application and which

approach. We do not want to subject some countries to specifically stronger corrections than others
without an a priori reason, but technically, our procedure would allow for that. Additional results are
available on request.

21The ranks of the pixels are much more stable over time than the values of the radiance-calibrated
data. The rank correlation of maximum city lights typically ranges from 0.90–0.95 for adjacent radiance-
calibrated satellites (see Online Appendix A).

22Whenever the radiance-calibrated data creates ties, we first try to break those ties using the ranks of
the stable lights data and then use the ranks of neighboring radiance-calibrated satellites. This produces
a near unique ranking each time. We also experimented with other rankings. The results are very similar
and available on request.
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underlies Figure 1. Note that the support of the Pareto distribution is unbounded, so

that its highest quantiles yield a handful of values far exceeding the natural limit of man-

made light intensity. To generate a realistic depiction of city lights we impose an upper

bound of 2000 DN, which approximately corresponds to the average maximum observed

in the world’s brightest cities (see Online Appendix A). Note that this barely affects the

overall results but only a few extreme values.23

The correction has a significant impact on how we understand the global distribution

of economic activity. On average, 3.7% pixels above the top-coding threshold account

for 17.7% of the total sum of lights observed in the stable lights data. This share almost

doubles to 31.94% after the correction—a statement which is approximately true in every

individual satellite-year, although later shares are bigger in absolute terms before and

after the correction. In other words, about four percent of all lit pixels account for about

a third of all visible economic activity. The worldwide spatial Gini coefficient rises by

nine percentage points, on average, after the correction. Note that the annual variation

in the global Gini coefficient is only a few percentage points, so that it is swamped by

the size of the top-coding correction. These findings are not particularly sensitive to the

choice of the Pareto shape parameter, although the size of the top-coding correction varies

somewhat. Online Appendix H provides a variety of summary statistics and sensitivity

checks using different Pareto shape parameters. The size of the correction in both the

country averages of light intensities and the country-wide spatial Gini coefficients varies

systematically with GDP per capita, country size and population density, in line with the

occurrence of top-coding illustrated in Figure 2. Moreover, we provide comparison checks

between the corrected data and the radiance-calibrated data for those 7 years when both

are available, finding correlations of 0.94-0.96.

We conduct two benchmarking exercises to assess the properties of the corrected data

and better understand at which scale of aggregation top-coding influences the conclusions

we are likely to draw when using night lights. We only briefly summarize the results

here and relegate a full discussion to Online Appendix I. The first exercise estimates

national light-output elasticities as in Henderson et al. (2012). Even at this high level

of aggregation, the top-coding corrected series performs marginally better. For the most

part, however, the estimates using the corrected data are not just economically but also

numerically very close to the original results. Our second benchmark goes from the

national to the regional level using German as a case study. This exercise allows us to

confirm the performance of our correction procedure in a developed economy with high-

23Online Appendix A reports and discusses the observed city-wide maxima obtained by the radiance-
calibrated satellites which motivate this upper bound in man-made luminosity. The truncated Pareto

has the CDF F (y) =
(

1 −
(

yc

y

)α)

/
(

1 −
(
yc

H

)α
)

for yc ≤ y ≤ H, where an upper bound of H = 2000

does not affect the overwhelming majority of stable lights pixels ≥ 55 to be replaced, but does ensure
realistic values at top, say, 0.01% of the data. Our results in the subsequent sections are very similar,
no matter if we use the simple Pareto or the truncated Pareto.
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quality regional accounts. Here we obtain two notable results. First, the light-output

elasticity rises considerably after the top-coding correction. Only the corrected data allow

us to recover estimates of the light-output elasticity comparable to the national-level in a

cross-section and panel of German regions. Second, light intensities in the corrected series

are approximately linear in population density and diverge from the stable lights data

after about one thousand people per square kilometer, that is, in denser urban areas. The

corrected data provides a realistic ranking of larger German cities, while the standard

data paints a distorted picture. Both findings suggest that the corrected data better

capture the light-output gradient in developed economies with mature urban structures.

5 Application: Cities in Sub-Saharan Africa

Armed with this new data, we now return to the question of whether primate cities are

outgrowing secondary cities in Sub-Saharan Africa and how city structures are adjusting

to continuously growing populations. In most African countries, economic activity is

concentrated in the biggest city. Dar es Salaam, Kinshasa and Lagos already are mega

cities with more than 10 million inhabitants, or will attain that status in a few years

(United Nations, 2018). Strong spatial concentration is often a feature of countries with

poor infrastructure and a low level of development (Krugman, 1991, Puga, 1998, Jedwab

and Vollrath, 2019), although Africa’s urbanization differs from the historical experience

of industrialized economies for a variety of reasons.

The new millennium marked a turning point for most African economies. Sustained

consumption growth and pro-poor distributional change brought about falling poverty

rates (Bluhm et al., 2018). However, as countries are developing, it is theoretically unclear

whether secondary cities will catch up (Duranton, 2008). There is some empirical evidence

suggesting that this is the case. Henderson et al. (2012), for example, estimate that the

African hinterland was growing about 2.3% faster than primate cities over the period from

1992 to 2008.24 Moreover, many in the World Bank view secondary city development as

key to sustained poverty reduction (Christiaensen and Todo, 2014, Christiaensen and

Kanbur, 2017). Yet, manufacturing is heavily concentrated in primate and coastal cities

with greater access to world markets. The oil price boom of the 2000s, for example, hurt

remote secondary cities more than primate cities (Storeygard, 2016). Secondary cities in

Africa have also been characterized as “consumption cities”, catering to the agricultural

hinterland rather than the modern sector (Gollin et al., 2016).

Whether or not primate cities are driving productivity growth depends—at least in

part—on their internal structure. Informal settlements in large cities can more easily

24Note that Henderson et al. (2012) also suggest that a “detailed study would be required to explain
the result” (p. 1024). In India, Gibson et al. (2017) find that secondary cities matter more for rural
poverty reduction when studying the spillover of urban growth at the intensive and extensive margin.
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absorb growing populations (Jedwab and Vollrath, 2019), but if these neighborhoods

remain badly connected to the center, then cities will be crowded, fragmented and

less productive (Lall et al., 2017). An adverse urban form implies that companies and

inhabitants are faced with high transport costs and long commuting times, which limits

interactions and positive spillovers across the city (Rosenthal and Strange, 2004, Harari,

2020). Ultimately, this may prevent the industries located in primate cities from reaping

increasing returns and diversifying into tradables, creating more urbanization without

industrialization (Venables, 2017, Gollin et al., 2016).

Our application tackles both of these aspects. The first part uses the top-coding

corrected data to show that primate cities have grown at least as quickly as secondary

cities and towns over the period from 1992 to 2013. The second part provides a

new perspective on within-city activity which is made possible by recovering the full

distribution of light intensities within cities. We show that the concentration of light

decreases over time as poorer neighborhoods develop. At the same time, we find evidence

for increasing fragmentation, suggesting that newly formed sub-centers are not well-

connected with the city as a whole.

City boundaries: Urban areas are often delineated using night light by defining them

as contiguously lit clusters above some fixed luminosity threshold (Small et al., 2011,

Storeygard, 2016, Harari, 2020). Satellite-derived footprints are particularly useful in

Africa, where administrative boundaries quickly become outdated. Relying on nighttime

lights is appealing, since they offer a time-varying measure of urban expansion, but the

thresholding approach suffers from a well-known problem: no single threshold works well

for all cities. Thresholding overestimates the urban extent of larger cities and penalizes

other cities at the same time (Small et al., 2011, Abrahams et al., 2018). We address

these issues using a method developed by Abrahams et al. (2018) to resolve exactly this

issue. Their de-blurring algorithm reduces the non-linear “overglow” in the lights data

and considerably improves the accuracy of the identified urban extents.25

To capture changes at the extensive margin and minimize measurement errors, we

define cities as contiguously illuminated pixels in the de-blurred lights, provided that

a light source is detected in at least two satellites over a period of three years.26 The

period from 1992 to 1994 marks the initial boundaries and the period from 2011 to

25The de-blurring approach is based on two insights into the data generating process: i) the original
light sources are blurred by a symmetric Gaussian point-spread function, and ii), pixels in which light
sources are located must be local maxima in the so-called percent frequency of light detection image
(for more detail see Abrahams et al., 2018). Note that we have used light intensity thresholds for the
detection of city boundaries in previous version of this paper which yields qualitatively similar results.

26Two images of the same place in the same year may indicate different urban footprints due to a lack
of on-board calibration. Considering a window of three years and requiring multiple detection points
effectively cancels out most of this artificial variation.
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Figure 4 – Primate and secondary cities in Sub-Saharan Africa

Notes: Illustration of the location of our panel of 41 primate and 527 secondary cities in SSA using
the urban footprint detection algorithm outlined in the text. Note that we dropped Equatorial
Guinea due to gas flaring on the capital island of Malabo and consider South Sudan as part of
Sudan for the entire sample.

2013 represents the latest available boundaries.27 We then identify city locations by

overlaying these urban areas with all settlement points from the Global Rural-Urban

Mapping Project (GRUMP) within three kilometers of the urban perimeter.28 An urban

area receives the name and attributes of the most populous settlement located within the

expanded urban perimeter.29

We create two data sets based on these urban areas. The first relies only on the

initial boundaries and allows us to track how economic activity of a city develops over

time at the intensive margin. The second takes the union of the initial and final period

boundaries to identify the “envelope” or maximum urban extent of the cities in our

sample. This data allows us to study the structure of cities as they grow and separate

27Online Appendix J shows both the initial and latest boundaries together with daytime images of
Lagos, Luanda, and Johannesburg taken at the end of both periods.

28We manually extend this data to include all coordinates of cities which at some point over the period
from 1992 to 2013 were designated the administrative capital of a province or state. We first identify
the administrative capitals of subnational regions using www.statoids.com and then geocode each city
using multiple online gazetteers.

29When population estimates are unavailable, we use the name and attributes of the settlement point
closest to the polygon centroid.

22



the intensive margin from extensive growth in the fringe (defined here as the envelope

minus the city boundaries from the initial period). Since several smaller cities merge over

time or become absorbed by a larger city in their vicinity, we aggregate all parts of a city

that will eventually become a single agglomeration, no matter if we are analyzing their

initial footprint or the envelope. Finally, we identify the primate city in each country

as the city with largest population and define all other cities and towns as secondary.

Not all small settlements qualify as secondary cities but there is no consensus on their

definition (minimum sizes typically range from 100,000 to 500,000 people). We also lack

accurate population data for the smaller settlements. Hence, for our main results, we

work with an area threshold of 9 km2—about 3 × 3 pixels—and show that our results

are robust to variations of this threshold in Online Appendix J.

Figure 4 shows a map of our universe of 568 cities and their population in 2000 (if

available). 41 cities, one per country, are primate cities, while 527 are secondary cities.30

The largest urban agglomeration in the sample is Johannesburg, followed by Lagos and

Cape Town.

City growth: Cities grow at the intensive margin, as existing city quarters develop and

become brighter, and at the extensive margin, as they expand and absorb surrounding

areas. Table 3 focuses on the intensive margin, that is, growth within the initial urban

boundaries. It shows summary statistics for the commonly used stable lights data and

our top-coding-free counterpart in 1992 and 2013. Panel (a) shows that the initial sum

of light originating from primary cities is, on average, more than ten times as large as

that of secondary cities. Panel (b) neutralizes the size difference and examines average

light densities. The initial light density in primate cities is about one and a half to twice

as large as in secondary cities. These stylized facts hold regardless of whether we use the

stable lights or the corrected data.

Substantial differences appear once we focus on city growth or compare the two

groups towards the end of the sample. The raw data shows that i) top-coding affects

primary cities much more than secondary cities, and ii) the size of the correction becomes

substantially larger over time. The correction adds 4.7% to the average light density of

primate cities in 1992, but increases it by 23.7% in 2013. The summary statistics also

show why this is happening. By 2013, the average light intensity of primate cities grew

to almost 62 DN according to the stable lights data, suggesting that nearly all pixels in

these cities are top-coded (regardless of where exactly we draw the line) and their light

intensity cannot continue to grow.

The correction has important implications for our understanding of agglomeration

30This lines up well with census-based counts of medium-sized secondary and primate cities in the
early 1990s. The 2018 update of the Africapolis database, for example, includes 551 cities which have
over 50,000 inhabitants in 1990.
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Table 3 – Summary statistics for African cities, 1992–2013, initial boundaries

Stable Lights Corrected Lights

Primate Secondary Primate Secondary

Panel a) Sum of lights

Sum in 1992 20321.93 1761.87 22777.48 1865.97
Sum in 2013 27485.29 2446.96 37126.00 2768.77
Annualized growth rate 0.0143 0.0156 0.0233 0.0188

Panel b) Lights per km2

Average in 1992 39.23 22.89 40.88 23.03
Average in 2013 61.61 38.42 76.21 39.31
Annualized growth rate 0.0215 0.0247 0.0297 0.0255

Notes: The table reports a selection of summary statistics for African cities based on their initial
boundaries. Annualized growth rates are computed as 1

21
(lnx2013 − lnx1992), where x refers to the

data per group reported in the table.

Figure 5 – Difference between primate and secondary cities in the two data sources

Notes: Illustration of how the component of the cross-sectional difference between primate and
secondary cities which can be fully attributed to the top-coding correction evolves over time. The
figure plots the coefficients, βp, and the corresponding 95% confidence intervals obtained from the

following regression: ln∆ijt =
∑T

p=1
βp(sp×Pij)+st+ǫijt where ln∆ijt is the log difference between

the corrected data and the stable lights data, Pij is an indicator for primate cities and sp or st are
year fixed effects. Standard errors are clustered at the city level.

economies and city growth in Sub-Saharan Africa. The stable lights data show that

secondary cities are catching up with primate cities—an artificial byproduct of more and

more pixels in primate cities becoming top-coded. This picture is reversed by the top-

coding correction. Primary cities outgrew secondary cities by about half a percentage

point, while the growth rate of secondary cities is hardly affected. This is reflected in
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the growth rates of individual cities as well. Top-coding plays virtually no role in small

primate cities, such as Bissau, while the annualized growth rates of larger cities, like

Kinshasa, Johannesburg, Luanda, Dakar or Khartum, increase by about a percentage

point or more.31 Figure 5 adds another piece of evidence along these lines. It shows that

the component of the difference between primate and secondary cities which can be fully

attributed to top-coding (and is net of annual measurement error) starts to rise strongly

after 2005. As a result, both cross-sectional differences and relative growth rates are

increasingly distorted in the later years of the stable lights data.

We underpin these descriptive results with panel growth regressions focusing on

growth at the intensive margin. In each case, we regress the log of lights per km2

recorded for city j in country i at time t, or lnLightsijt, on a linear time trend, an

interaction of the linear time trend with an indicator for primate cities, Pij, and a set

of fixed effects that varies across specifications. We typically include city fixed effects

and then progressively add satellite, year or country-year dummies to purge systematic

measurement errors across satellites.32

Table 4 – Growth regressions for African cities, intensive margin

Dependent variable: Log lights in the initial footprint

Stable lights data Corrected data
(1) (2) (3) (4) (5) (6)

Linear trend 0.842 0.831
(0.126)∗∗∗ (0.126)∗∗∗

[0.543] [0.555]

Primate × Linear trend 0.275 0.275 0.249 0.738 0.737 0.821
(0.185) (0.185) (0.340) (0.255)∗∗∗ (0.255)∗∗∗ (0.313)∗∗∗

[0.198] [0.195] [0.343] [0.260]∗∗∗ [0.258]∗∗∗ [0.314]∗∗∗

City FE X X X X X X

Satellite FE X – – X – –
Year FE – X – – X –
Country-Year FE – – X – – X

Observations 12487 12487 12487 12487 12487 12487
Cities 568 568 568 568 568 568

Notes: The table reports the results of city-level panel regressions using the stable lights and top-
coding corrected data. All coefficients are scaled by 100 for readability. The specifications are
variants of lnLightsijt = β1t + β2(t × Pij) + cij + sjt + ǫijt where t is a linear time trend, Pij

is an indicator for primate cities, cij is a city fixed effect and sjt contains a varying set of fixed
effects (satellite, year, or country-year). Standard errors clustered at the city level are reported in
parentheses. Conley errors with a spatial cutoff of 1,000 km and a time-series HAC with a lag cutoff
of 1,000 years are reported in brackets. Significant at: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

31Online Appendix J presents data for each country, listing the primate city, as well as the growth
rates of mean lights in both the primary and all secondary cities.

32Our vector of satellite dummies accounts for all the possible combinations of satellites, e.g. the fact
that the value for 1993 are averages of the satellites with flight numbers F10 and F12.

25



Table 4 confirms that primate cities outgrew secondary cities by a significant margin.

Columns (1) and (4) show that the average growth rate of secondary cities was slightly

more than 0.8% per annum. The trend is statistically significant when errors are clustered

at the city level but is not robust to allowing for spatial dependence across cities. Annual

fluctuations in the light sensitivity of the satellites imply that this baseline growth rate

might not be identified, which is why we include year or country-year fixed effects in

the subsequent columns and focus on the difference in growth rates. The differential

between primate and secondary cities can still be estimated in those specifications and is

net of this specific measurement error. We would draw very different conclusions about

their relative growth rates in either of these two data sets. The stable lights data in

columns (1) to (3) suggest no significant differences in growth across city types. On

the contrary, the corrected data in columns (3) to (5) indicate that primate cities grew

0.7-0.8 percentage points faster than secondary cities. The estimated coefficient on the

interaction term directly corresponds to a difference in means test. Hence, we can reject

the null hypothesis that both trends are the same at conventional significance levels. The

growth rates of secondary cities are virtually unaffected by the correction. If we take

these estimates at face value, then primate cities grew nearly twice as fast as secondary

cities—a difference of almost 19% over the entire period of 21 years.

Online Appendix J presents several robustness checks, which we only briefly

summarize here. The differential remains intact when we i) vary the area threshold for the

minimum secondary city size, ii) omit any one region of Sub-Saharan Africa, or iii) use the

radiance-calibrated data in the seven available years. In fact, the radiance-calibrated data

deliver estimates of the interaction term that are close to those presented here. However,

the average light intensity recorded by the radiance-calibrated data exhibits such large

fluctuations that they produce overall trends which are negative—a result which cannot

be supported by any other data or an appeal to fundamentals. Although the difference

in growth rates between secondary and primate cities is less affected by these common

trends, we take this as further indication that these data are not a workable alternative

to our data in a panel setting.

So far we have focused exclusively on the intensive margin. When the city footprint is

kept fixed, we can interpret growth in lights directly as increases in population density and

economic activity per square kilometer. Population density, in turn, is strongly correlated

with living standards and public good provision in developing countries (Gollin et al.,

2017). Estimates from developed countries suggest that a doubling of population density

raises productivity by about 5% (Rosenthal and Strange, 2004). Dense city centers are

also the places where top-coding is most pronounced. New developments at the fringe

of a city are usually dimmer. However, there too, primate cities have been growing

substantially faster than secondary cities (according to both data sources).33 Taken

33Online Appendix J contains the corresponding regression results.

26



together, this set of results could be good news for African economies. If these increases

go hand-in-hand with improvements in infrastructure and greater housing density, then

they signify rising welfare in primate cities.

City structure: Next, we study how the interior structure of cities is transforming

over time. Our aim is to better understand whether neighborhoods within African

cities are becoming better connected or whether they increasingly resemble loose clusters

of disconnected informal settlements. For this part of the analysis, we only use the

corrected data and focus on the “envelope” of the city, that is, the maximum urban extent

observed in both the initial and final boundaries. The rationale for these two choices is

straightforward. First, Figure 1 clearly illustrates that any measure of dispersion would

be severely biased if calculated on the original data where all top-coded pixels have

similar light intensities. New York, London, New Delhi or Johannesburg would appear

as homogenous cities within which most locations look alike. Second, focusing on the

maximum urban extent allows cities to sprawl and become less connected over time

(Harari, 2020), while physically constrained cities or cities in which slums are replaced

with formal housing can increase in density and compactness.34

We compute two proxies for the variation of urban population density or within-city

fragmentation, both of which have been previously used in the literature on urban forms

(e.g. see Tsai, 2005). Our first measure is the coefficient of variation of lights per km2.

The coefficient of variation is a simple inequality measure capturing the variation of light

intensities across an entire city. It is defined as the ratio of the standard deviation to the

mean. A high (low) value indicates large (small) within-city differences in the dispersion

of light. The index is not bounded from above.

Our second measure of fragmentation is Moran’s I (Moran, 1950). Moran’s I takes

the precise location of each pixel within a city into account and indicates whether similar

light intensities cluster together in space. It is defined as

I =
N

S0

∑

i

∑

j wij(xi − x̄)(xj − x̄)
∑

i(xi − x̄)2

where N is the number of pixels in the initial footprint of the city, wij are elements of an

N ×N inverse distance weight matrix, S0 is the sum of all wij, xi or xj is the pixel-level

light intensity, and x̄ is mean luminosity.35

Positive values of Moran’s I indicate that pixels are surrounded by others of similar

luminosity or population density (positive autocorrelation), while negative values reflect

34We still focus on agglomerations which are now defined as all sub-cities which will eventually merge
into a single metropolitan area. All results presented here are robust to using the initial footprint only.

35We work with a scaled version of Moran’s I to make cities consisting of different numbers of pixels
comparable, that is, we subtract its expected value under the null hypothesis of no spatial correlation:
I∗ = I − E[I] = I − (−1/(N − 1)).
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a checkerboard pattern (negative autocorrelation). The index ranges from minus one to

one. Light intensities within cities are positively spatially correlated but there is a clear

ranking. The index continuously falls as we move from monocentric cities over polycentric

cities to decentralized urban sprawl. A monocentric city in which luminosity slowly and

gradually decreases from the densely populated center to the sparsely populated outskirts

will have a higher Moran’s I than a checkered city in which dense and sparsely populated

areas take turns. We scale both indices by 100 for a better exposition.

Panel (a) of Figure 6 illustrates the heterogeneity of urban structures on the

subcontinent and shows that our light-based measures capture meaningful variation.

Consider, for example, cities with a high Moran’s I and relatively low coefficients of

variation, such as Conakry, Dakar, and Cotounou. This combination indicates a regular

structure with a bright center surrounded by similarly bright areas with a slow decay

towards darker outskirts. Other cities with the same coefficient of variation have a

much lower Moran’s I. Their spatial distribution is considerably more fragmented,

matching other accounts. A large part of Abidjan’s population, for example, lives in slums

characterized by illegal land tenure, buildings made out of non-permanent materials, and

little or next to no infrastructure (UN-Habitat, 2003).

Figure 6 – Varying structures of cities in Sub-Saharan Africa

(a) Fragmentation in primate cities, 2000
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Notes: Illustration of urban structures in Sub-Saharan Africa. Panel (a) shows a cross-sectional
scatter plot of the estimated coefficient of variation (CV) and Moran’s I in 2000. Panel (b) displays
the evolution of Moran’s I in Johannesburg over the period from 1992 to 2013.

Johannesburg is a particularly interesting case in terms of fragmentation. In 2000, it

has one of the highest coefficients of variation and the lowest Moran’s I in our sample of

primate cities. Owing to a legacy of racial segregation during Apartheid, Johannesburg

consists of alternating poor and rich neighborhoods which do not form a single integrated

city. There is some limited evidence that this pattern is changing. Panel (b) of Figure 6

shows that we observe a moderate increase in Moran’s I since the mid-2000s. The
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coefficient of variation is decreasing at the same time. This suggests that the different

neighborhoods are integrating, although the overall levels of inequality and fragmentation

remain very high when compared with other cities in our sample.36 Just as before, we

have to be careful when interpreting raw trends based on these data, as they include

substantial measurement error.

We employ the same approach as before to analyze these data in a more structured

manner and focus on the differential between city types—i.e., we regress one of the

measures of city fragmentation, Fijt, on a linear time trend, an interaction of a linear

time trend with an indicator for primate cities, Pij, the log of lights per km2 in the city,

lnLightsijt, and a set of fixed effects that vary across specifications. We include the

city-wide average light intensity to analyze their changing structure net of scale effects.37

Table 5 – Trends in fragmentation of African cities, envelopes

Dependent variable:

Coefficient of Variation Moran’s I
(1) (2) (3) (4) (5) (6)

Linear trend -0.436 -0.523
(0.050)∗∗∗ (0.030)∗∗∗

[0.109]∗∗∗ [0.060]∗∗∗

Primate × Linear trend -0.796 -0.797 -0.657 -0.019 -0.020 -0.004
(0.128)∗∗∗ (0.128)∗∗∗ (0.146)∗∗∗ (0.027) (0.027) (0.036)
[0.132]∗∗∗ [0.132]∗∗∗ [0.148]∗∗∗ [0.030] [0.030] [0.036]

Lights per km2 -18.759 -18.732 -17.334 -1.343 -1.232 -1.456
(1.787)∗∗∗ (1.871)∗∗∗ (1.997)∗∗∗ (0.467)∗∗∗ (0.496)∗∗ (0.617)∗∗

[1.980]∗∗∗ [2.060]∗∗∗ [2.224]∗∗∗ [0.477]∗∗∗ [0.504]∗∗ [0.605]∗∗

City FE X X X X X X

Satellite FE X – – X – –
Year FE – X – – X –
Country-Year FE – – X – – X

Observations 12356 12356 12356 12356 12356 12356
Cities 562 562 562 562 562 562

Notes: The table reports results of city-level panel regressions using the top-coding corrected data.
The specifications are variants of Fijt = β1t+ β2(t× Pij) + β3 lnLightsijt + cij + sjt + ǫijt, where
Fijt is either the coefficient of variation or Moran’s I, t is a linear time trend, Pij is an indicator for
primate cities, cij is a city fixed effect and sjt contains are varying set of fixed effects (satellite, year,
or country-year). Standard errors clustered at the city level are reported in parentheses. Conley
errors with a spatial cutoff of 1,000 km and a time-series HAC with a lag cutoff of 1,000 years are
reported in brackets. Significant at: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table 5 reveals two new insights. First, we observe a decrease in the dispersion of

lights over time which differs strongly across the two city types. Column (1) shows that

36The evidence is stronger if we focus on the initial footprint and ignore that Johannesburg is
sprawling. The rise towards the end of the sample is steeper and exceeds the values of the 1990s.

37Note that this does not alter our conclusions in any important manner.
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the coefficient of variation has been decreasing steadily over the period from 1992 to 2013.

Columns (2) and (3) add that this trend is two or almost three times faster in primate

cities relative to the decline secondary cities. Second, this decrease in the concentration

of light is accompanied by an increasingly less regular structure of cities, as is implied

by decreasing Moran’s I. However, we observe few differences between primary and

secondary cities on this index. Our results suggest that African cities as a whole are

sprawling and becoming less compact. This trend is compounded by increases in light

density with the envelope of a city. Growing cities experiences further reductions in the

coefficient of variation as well as as Moran’s I.38

Our preferred interpretation of these findings is that Africa’s biggest cities are at

a crossroads. They are growing rapidly at the intensive and extensive margin, while

the distribution of economic activity and people is starting to equalize across the city.

The simultaneous decrease in clustering, which is also present when we only examine the

initial footprint, tells us that subcenters are forming but these may or may not ultimately

coalesce into a cohesive whole.39 Although poorer neighborhoods are becoming denser

and brighter relative to the center, a lack of connectivity to other neighborhoods remains

a major obstacle and constrains economies of scale. This limits the ability of African

cities to facilitate matching, sharing and learning (Duranton and Puga, 2004). Moreover,

the lack of a compact shape itself induces large welfare losses for urban consumers in

developing countries (Harari, 2020).

It is important to emphasize that there is nothing tautological about these results

in our correction; if anything, the procedure provides a lower bound of primate city

growth and fragmentation. Top-coded pixels which become brighter over time move up

in the global ranking and thus receive higher theoretical values. Our correction does not

explicitly consider whether these pixels are located in primary or secondary cities, or if

they are surrounded by other bright pixels. This is precisely how Johannesburg is able

to buck the trend of other large cities in Sub-Saharan Africa.

6 Concluding remarks

While satellite data of nighttime lights are an increasingly popular proxy for economic

activity, they suffer from top-coding and severely underestimate the brightness of most

cities. The key contribution of this paper is to provide a solution to this problem and

establish new findings about the economic performance of cities in Sub-Saharan Africa.

38We also present tentative evidence on whether an increasing fragmentation of cities inhibits their
subsequent growth in Online Appendix J. Light inequality seems to lower future growth, while the effect
of fragmentation appears to be ambiguous.

39Simulations with a fixed city size show that the emergence of sub-centers goes in line with an increase
in light density, a decrease in light inequality and an increase in fragmentation, just as we observe in the
African data.
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Our solution rests on the claim that top lights can be characterized by a Pareto

distribution. We support this conjecture in two ways. First, a model of luminosity

emitted by large cities suggests that plausible assumptions directly lead to a power law

in light emissions. Second, a battery of empirical tests indicates that a Pareto distribution

is a sound representation of the data. Other parametric or non-parametric approaches

are possible, but we find it appealing to directly link the distribution of bright lights

to both Zipf’s law of cities and the standard tail extrapolation problem. On this basis,

we develop a geo-referenced ranking procedure to replace the top-coded pixels with their

theoretical counterparts and present a new global panel of light intensities over the period

from 1992 to 2013.

The new data lends itself to numerous applications and performs well in several

benchmarking exercises. In this paper, we focus on city growth and city structure in Sub-

Saharan Africa. Our main finding is that primary cities have maintained their dominant

position but are becoming more fragmented internally. This limits economies of scale and

their ability to break into world markets. Institutional features certainly play a role in

this development and warrant more research. If public services are improving, and public

infrastructure connects striving neighborhoods, then this will have wide-ranging benefits

extending well beyond the city. Finally, by focusing on cities in Sub-Saharan Africa, we

submit our data to a conservative test. Given that the top-coding correction makes a

substantial difference in a setting where electrification rates and urban building densities

are low, it will certainly play a larger role in other parts of the world.
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A Additional summary statistics

In this section we provide further details on the construction of the stable lights and

radiance-calibrated lights, and compare their characteristics.

The main advantage of the stable lights series is that they are available as an annual

panel. Moreover, for several years more than one satellite orbited Earth, resulting in a

total of 34 satellite-years over the period of 1992 to 2013. The radiance-calibrated data,

by contrast, are based on rarely occurring additional flights of satellites which were about

to be decommissioned and could be operated with a different gain setting (lower or higher

amplification settings). These auxiliary data are only available for seven years over the

entire period from 1996 to 2010. NOAA blended the stable lights data from normal flight

operations with these auxiliary satellite data to obtain the radiance-calibrated series

(Elvidge et al., 1999, Ziskin et al., 2010, Hsu et al., 2015). The resulting night light

intensities are free of top-coding and have no upper bound (at least in theory).

Several technical issues and measurement errors, occurring when the different fixed

gain images were merged at NOAA, produced a lot of variability in the radiance-calibrated

data: i) the low amplification data are based on considerably fewer orbits than the

stable lights series (often covering only small parts of a year), ii) they were generated by

blending different parts of the frequency spectrum which are deemed reliable, iii) higher

light intensities are supported by fewer and fewer fixed-gain images1, and iv) fires or stray

lights were not fully removed from the auxiliary data. All this contributes to the high

variance across different radiance-calibrated satellite-years.2 Because of this instability,

together with the fact that they are only available for seven out of 22 years, we only rely

on the radiance-calibrated data to infer the shape of the distribution at the top. The

relative ranks of pixels are consistently measured across the different satellites and less

prone to be affected by measurement errors.

Table A-1 reports summary statistics for the 34 stable light satellite-years and the

seven radiance-calibrated years. Between 2.7% and 5.9% of all pixels in the stable lights

images reach the top of the scale (i.e., 55 DN to 63 DN), more so in later years. As the

radiance-calibrated lights do not suffer from top-coding, their mean, standard deviation

and Gini in lights are much higher. Rather than being capped at 63 DN, they reach

maximum values from 2000 to 5000 DN. The fluctuations across satellites are reflected

in the overall mean light intensity, but are most apparent at the top. The maximum

1Consider the 2010 radiance-calibrated product for example, the maximum number of cloud-free
images is 134, the suburbs of Paris are informed by about 50–60 cloud-free images, but the city core only
by 10–20 images. This pattern repeats itself throughout all major cities.

2Measurement errors are also present in the stable lights data and affect their reliability in the time
series dimension but to a much lesser extent. The sensors of the satellites deteriorated over their lifetime
and had to be replaced every couple of years, which implies that later recordings of any particular satellite
tend to be the brightest (although this is not a hard rule). In panel regressions, economists usually resort
to a combination of satellite and time fixed effects to partially address this issue.
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light intensity doubles within three years and then decreases again by a similar amount

(whereas the mean increases and decreases by about 27% over the same period).

Table A-2 confirms that these fluctuations are not driven by a few outliers. Instead

of examining overall maxima, we now report various percentiles for the seven radiance-

calibrated satellites and the means above these percentiles. For example, the top 2% begin

at 147.01 DN in the 1996 data, at 214.59 DN in 2003, and again at 150.90 DN in 2010.

The means above the various percentiles vary similarly over time. The differences are

largest in absolute values at the very top but remain sizable throughout the distribution.

This variation cannot be explained economically.

Table A-3 shows the maximum values attained by the seven radiance-calibrated

satellites in 30 selected cities. Despite considerable variability over time, the relative

ranking is in line with our expectations. The light intensity of the brightest pixel in New

York City, for example, is about ten times greater than that of the brightest pixel in

Nairobi. Note that the average maximum light intensity hardly exceeds 2000 DN, no

matter if we compute it for London, New York, or Shanghai. This is why we restrict the

maximum light intensities generated by our pixel-level correction to 2000 DN.

Table A-4 illustrates that not all differences between the stable lights and radiance-

calibrated data can be attributed to top-coding. It regresses all pixels below 55 DN of

the stable lights on the radiance-calibrated lights, where top-coding is supposed to not

play a role. We find a regression coefficient around one-half rather than equivalence.

This absence of a one-to-one correspondence is owed to the lack of on-board calibration,

blooming (Abrahams et al., 2018), the presence of stray light (Hsu et al., 2015), and

geo-location errors (Tuttle et al., 2013).

Table A-5 reports the maximum light intensities recorded within 25 kilometers of the

city center in 988 world cities with more than 500,000 inhabitants. Table A-6 adds the

rank-correlations. The latter are much higher and typically around 0.90–0.95 for adjacent

radiance-calibrated years, which supports our preference for pixel ranks over their actual

values.
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Table A-1 – Summary statistics of the stable lights and radiance-calibrated data

Stable lights Radiance-calibrated

Year Flight No. Mean Std. Dev. Gini % ≥ 55 Mean Std. Dev. Gini Max

1992 F10 13.83 13.51 0.44 3.81
1993 F10 11.96 12.81 0.46 3.12
1994 F10 12.02 13.31 0.48 3.49

F12 14.65 13.93 0.44 4.20
1995 F12 13.09 13.57 0.46 3.76
1996 F12 12.69 13.36 0.46 3.51 19.42 55.63 0.65 2064
1997 F12 13.45 13.74 0.45 3.94

F14 10.98 12.87 0.49 3.16
1998 F12 13.89 13.89 0.45 4.18

F14 10.94 12.78 0.49 3.05
1999 F12 14.74 14.34 0.44 4.67 19.53 56.93 0.64 4698

F14 10.15 12.31 0.49 2.78
2000 F14 11.34 12.99 0.49 3.18 22.88 65.84 0.63 5552

F15 13.25 13.34 0.44 3.70
2001 F14 11.64 13.32 0.49 3.50

F15 12.93 13.26 0.45 3.54
2002 F14 12.14 13.70 0.49 3.77

F15 13.18 13.44 0.45 3.72
2003 F14 11.96 13.72 0.49 3.82 24.83 67.57 0.65 4186

F15 10.28 12.45 0.50 2.70
2004 F15 10.08 12.52 0.51 2.76 24.07 65.94 0.66 4357

F16 11.82 13.04 0.46 3.40
2005 F15 10.44 12.73 0.51 2.79

F16 10.44 12.54 0.49 2.85
2006 F15 10.56 12.91 0.51 2.93 20.63 50.93 0.63 3333

F16 12.26 13.37 0.47 3.48
2007 F15 10.74 12.82 0.50 2.79

F16 13.05 13.79 0.46 4.03
2008 F16 12.97 13.84 0.47 3.95
2009 F16 13.50 14.12 0.47 4.17
2010 F18 17.55 15.35 0.43 5.91 19.04 44.35 0.60 2110
2011 F18 14.78 14.68 0.46 4.94
2012 F18 16.44 15.20 0.44 5.76
2013 F18 16.23 15.20 0.44 5.78

Notes: The table reports summary statistics using a 10% sample of the stable lights and radiance-
calibrated data at the pixel level, where each pixel is 30 × 30 arc seconds. There are several years
when two DMSP satellites were concurrently recording data for the stable lights series, so that there
are 34 satellite-years between 1992 and 2013. The radiance-calibrated data are only available for
the following periods: 16 Mar 96 – 12 Feb 97 (1996), 19 Jan 99 – 11 Dec 99 (1999), 03 Jan 00 – 29
Dec 00 (2000), 30 Dec 02 – 11 Nov 2003 (2003), 18 Jan 04 – 16 Dec 04 (2004), 28 Nov 05 – 24 Dec
06 (2006), and 11 Jan 10 – 9 Dec 10 (2010), although the actual coverage in terms of days often
refers to a much smaller period.
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Table A-2 – Summary statistics of the radiance-calibrated data (top shares)

Year 1996 1999 2000 2003 2004 2006 2010

Panel a) Top 5%

Percentile (x) 62.87 66.74 73.75 94.60 90.97 74.97 64.84
Mean above x 186.04 197.42 228.61 245.59 236.80 189.34 166.90

Panel b) Top 4%

Percentile (x) 76.30 84.79 95.62 119.27 114.26 94.03 81.98
Mean above x 215.29 228.01 264.84 280.40 270.51 215.70 190.42

Panel c) Top 3%

Percentile (x) 98.42 114.12 131.13 154.40 149.82 122.72 108.27
Mean above x 258.23 271.33 315.97 328.70 317.06 251.82 222.49

Panel d) Top 2%

Percentile (x) 147.01 166.33 198.77 214.59 207.97 168.84 150.90
Mean above x 327.60 338.23 393.22 402.32 387.54 305.83 269.84

Panel e) Top 1%

Percentile (x) 259.04 275.41 318.53 331.88 314.53 255.44 229.79
Mean above x 460.17 463.60 534.81 538.85 519.98 404.80 354.36

Panel f) Top 0.1%

Percentile (x) 729.41 716.94 815.16 822.00 805.43 605.13 511.62
Mean above x 979.91 960.86 1117.96 1110.62 1111.93 806.63 687.53

Panel g) Top 0.01%

Percentile (x) 1355.38 1279.48 1528.71 1491.25 1516.16 1085.71 936.22
Mean above x 1551.16 1652.31 1893.03 1828.03 1914.32 1316.93 1137.76

Notes: The table shows summary statistics of the radiance-calibrated data at the various percentiles.
The input data are a 10% representative sample of all non-zero lights in the radiance-calibrated data
above the defined threshold at the pixel level, where each pixel is 30× 30 arc seconds.
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Table A-3 – Maximum light intensities in 30 selected cities over time

City 1996 1999 2000 2003 2004 2006 2010 Average

Beijing 2265.07 3160.86 977.94 2979.75 2911.25 1575.00 1262.30 2161.74
Berlin 757.45 518.67 430.80 490.48 556.83 418.00 375.34 506.79
Bogota 661.73 774.02 416.75 602.80 828.82 622.18 489.89 628.02
Brussels 1334.32 1765.47 1632.47 1561.80 1767.69 1058.33 674.38 1399.21
Cairo 543.47 622.09 527.60 730.67 753.50 550.00 414.87 591.74
Calgary 1084.76 2077.92 1669.85 822.00 1520.70 731.15 721.22 1232.51
Casablanca 919.44 769.98 729.69 1214.73 1075.77 708.33 620.97 862.70
Damascus 800.90 724.38 470.05 472.74 893.66 820.00 675.15 693.84
Dhaka 1026.01 1410.89 882.44 935.03 840.66 920.00 465.11 925.73
Dubai 329.21 323.17 269.86 457.58 607.57 1280.34 420.12 526.84
Edinburgh 811.04 537.69 453.18 973.48 767.20 425.24 518.75 640.94
Foshan 715.98 1410.36 537.46 1499.66 1625.73 1142.86 1164.98 1156.72
Istanbul 579.83 551.57 413.14 653.84 543.84 421.08 327.46 498.68
Jakarta 683.82 664.56 1100.27 1381.62 788.43 805.95 632.81 865.35
Johannesburg 349.23 406.95 271.40 343.70 510.57 314.39 304.96 357.31
London 3342.95 2145.71 1664.97 1575.50 2123.50 1815.38 1366.45 2004.92
Los Angeles 1741.22 1807.50 1519.95 1757.50 1794.70 1288.89 1087.33 1571.01
Manila 1117.10 768.36 390.44 969.96 1260.40 692.31 551.60 821.45
Moscow 1011.28 1308.20 1270.86 1282.32 1142.01 945.45 655.45 1087.94
Mosul 225.95 232.32 211.38 370.24 284.30 321.64 319.33 280.74
Mumbai 1456.54 1790.01 1515.98 1775.52 1963.82 1322.22 1842.57 1666.67
Nairobi 180.27 188.66 211.83 173.54 191.45 174.02 164.13 183.41
New York 2299.18 2090.67 1971.10 2283.33 2877.00 1592.86 1399.78 2073.42
Paris 1827.80 2444.32 1177.72 1430.28 1794.70 1425.00 874.55 1567.77
Rio de Janeiro 926.51 917.27 748.92 699.31 708.83 484.08 461.57 706.64
Seoul 629.42 695.65 629.67 808.30 810.81 580.00 513.82 666.81
Shanghai 1965.24 1906.01 1123.89 2931.80 3982.13 2307.14 1926.59 2306.12
Sydney 1482.57 1470.49 1006.67 1923.48 1600.94 1275.00 751.58 1358.68
Tel Aviv 1284.19 1679.72 997.83 1397.40 1446.72 1188.24 1099.83 1299.13
Tokyo 1709.40 1768.79 1785.16 1876.90 2013.90 1273.33 940.31 1623.97

Notes: The table report the maximum light intensity in DN recorded within 25 km radius of the
city center in selection of cities. The input data are the radiance-calibrated lights. City locations
are obtained from the Natural Earth point data of major populated places.
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Table A-4 – Regression of stable lights on radiance-calibrated data

Year 1996 1999 2000 2003 2004 2006 2010

Stable lights 0.5557 0.5502 0.4241 0.4357 0.3473 0.4874 0.7468
(0.0002) (0.0003) (0.0002) (0.0002) (0.0001) (0.0002) (0.0004)

Constant 4.6422 5.5218 3.9172 3.6007 3.2069 2.9392 6.4094
(0.0045) (0.0054) (0.0044) (0.0043) (0.0036) (0.0037) (0.0066)

R2 0.7440 0.7013 0.7115 0.7709 0.7873 0.8011 0.6319

Notes: The table reports OLS estimates of a regression of all pixels smaller than 55 DN of the stable
lights on their radiance-calibrated counterpart in all those years for which both data sources are
available. Standard errors are in parentheses. The data are a 10% random sample of lights at the
pixel level, where each pixel is 30× 30 arc seconds.

Table A-5 – Correlation matrix of maximum city lights

Years 1996 1999 2000 2003 2004 2006 2010

1996 1.0000
1999 0.9142 1.0000
2000 0.8615 0.8561 1.0000
2003 0.8588 0.8619 0.7715 1.0000
2004 0.8733 0.9002 0.8073 0.9181 1.0000
2006 0.8737 0.8974 0.8109 0.9307 0.9379 1.0000
2010 0.7831 0.7872 0.7428 0.8529 0.8525 0.8955 1.0000

Notes: The table reports correlations between the maximum light intensities recorded within 25 km
radius of the city center of 988 world cities with more than 500,000 inhabitants.

Table A-6 – Rank correlation matrix of maximum city lights

Years 1996 1999 2000 2003 2004 2006 2010

1996 1.0000
1999 0.9557 1.0000
2000 0.9167 0.9122 1.0000
2003 0.9048 0.9162 0.8451 1.0000
2004 0.9129 0.9331 0.8447 0.9536 1.0000
2006 0.9063 0.9256 0.8611 0.9482 0.9549 1.0000
2010 0.8495 0.8651 0.8108 0.8964 0.8973 0.9270 1.0000

Notes: The table reports rank correlations between the maximum light intensities recorded within
25 km radius of the city center of 988 world cities with more than 500,000 inhabitants.
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B The top-coding threshold

The influence of top-coding in the DMSP-OLS satellite data has been underestimated

in part because much of the literature assumes it only affects pixels with the highest

recorded value. However, even though the scale of stable lights goes up to 63, we have

good reason to assume that many pixels with DNs of 62, 61, down to the mid-50s, are

subject to top-coding and should be brighter than they are recorded in the data.

The rationale behind this conjecture is straightforward. The stable lights data were

already averaged at least twice during the data construction. First, the DMSP satellites

averaged several higher resolution pixels on-board to reduce the amount of information

that needs to be transmitted down to Earth. The OLS system recorded images at a

nominal resolution of 0.56 km, which was averaged on-board into 5 × 5 blocks to create

a 2.77 km (smooth) resolution and then reprojected onto a 30 arc second grid.3 Second,

the data providers at NOAA processed the daily images into a single annual composite.

As a result, many pixels suffering from top-coding in at least one of the underlying fine

resolution data points or smooth resolution daily images would have ended up with an

average value of less than 63. Hsu et al. (2015) suggest that this subtle type of top-coding

may even start at a DN as low as 35. Since “the OLS does onboard averaging to produce

its global coverage data, saturation does not happen immediately when radiance reaches

the maximum level. On the contrary, as the actual radiance grows, the observed DN value

fails to follow the radiance growth linearly, causing a gradual transition into a plateau of

full saturation” (Hsu et al., 2015, p. 1872).

We explore the location of the top-coding threshold with a statistical approach. If

only the stable lights at 63 DN were subject to top-coding, we would expect the histogram

in panel (a) of Figure B-1 to show a decreasing shape ending in a spike only at 63 DN.

Instead, we observe an increase in the number of pixels from 55 onwards (e.g. a bathtub

shape), signaling that these values are top-coded as well. Further evidence along these

lines is provided by panel (b) of Figure B-1. It shows a histogram of the light intensity

of the stable lights DNs associated with high radiance-calibrated values (above 160 DN).

There are a large number of pixels with DNs down to the mid-50s which correspond

to very high radiance-calibrated values, but the density falls rapidly below the mid-50s.

Other years show very similar patterns.

Table B-1 list the percentile values of the radiance-calibrated lights corresponding to

stable lights at 55 DN, 56 DN and so on. The stable lights at 63 DN have the highest

radiance-calibrated values (50% of them are higher than 390 DN). But there is also a

significant share of 55 DN lights corresponding to high radiance-calibrated values, for

instance, 25% are recorded with 140 DN or brighter.

3See https://directory.eoportal.org/web/eoportal/satellite-missions/d/dmsp-block-5d

or Abrahams et al. (2018) for a detailed description of the sensors and on-board processing.
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Figure B-1 – Histograms of stable lights in 1999

(a) If stable DN > 9
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(b) If radiance-calibrated DN > 160
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Notes: Illustration of the location of the top-coding threshold in the stable lights. Panel a) shows
a histogram of the F12 satellite in 1999 for all pixels with a DN greater 9. Panel b) shows a
histogram of the same satellite only for pixels where the radiance-calibrated light intensity is greater
160 DN. The input data are a 10% representative sample of all non-zero lights in the stable lights
and radiance-calibrated data at the pixel level (see Elvidge et al., 2009, Hsu et al., 2015).

Table B-1 – Percentiles of radiance-calibrated values at given stable lights values in 2000

Stable lights Radiance-calibrated percentiles
DN 5% 25% 50% 75% 95% 99%

55 53.20 74.94 99.41 140.85 232.90 328.86
56 56.15 79.99 108.20 153.92 250.93 344.05
57 60.14 84.99 115.11 164.63 262.18 357.60
58 64.13 92.81 125.35 179.57 277.59 392.33
59 70.32 101.97 141.92 203.17 306.77 423.28
60 79.16 116.64 163.92 231.91 344.57 497.25
61 89.33 137.89 196.68 268.21 410.91 625.30
62 109.03 176.36 246.66 331.46 524.18 762.63
63 160.91 276.92 390.08 560.28 952.14 1494.85

Notes: The table reports values from the cumulative distribution function of the radiance-calibrated
lights which are associated with a given stable lights value (from 55 to 63). For instance, 25% of
the radiance-calibrated values associated with a stable lights value of 61 DN, are below 122.06. The
data are a representative 10% sample for the year 2000.
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C Proofs and extensions of the model

In this section we provide additional proofs and extensions of the model presented in the

main text.

The CDF of the number of rings: Note that r = π−1/2x1/(2φ) implies x = πφr2φ and

dx = 2φπφr2φ−1dr. Substituting these definitions into eq. (1) and integrating yields the

CDF of the number of rings per city as presented in eq. (2) of the main text

F (r) = 2φxcπ
−φ

∫ r

r̃

r−2φ−1dr = 2φxcπ
−φ

[

− 1

2φ
r−2φ

]r

r̃

=







0 for r < r̃ = π−1/2x
1/(2φ)
c

1− ycπ
−φr−2φ for r >= r̃ = π−1/2x

1/(2φ)
c .

(C-1)

The density of pixels: Start with the distribution of the number of pixels. At

distances d < d̃, the amount of pixels increases linearly in d as rings farther away from

the center contain more pixels: d
dd

πd2 = 2πd. Beyond d̃, the effect within each city has

to be multiplied by the survival function 1 − F (r) from eq. (2), as there are fewer and

fewer cities of such size. Denoting the number of cities as M , the absolute amount of

pixels N as a function of d is

P (d) =







2πdM for d < d̃ = π−1/2x
1/(2φ)
c

2π1−φMxcd
1−2φ for d ≥ d̃ = π−1/2x

1/(2φ)
c .

(C-2)

The total number of pixels, N , can be obtained by integration

N =

∫ d̃

0

2πdMdd+

∫
∞

d̃

2π1−φMxcd
1−2φdd = 2πM

[
1

2
d2
]d̃

0

+ 2π1−φMxc

[
1

2− 2φ
d2−2φ

]
∞

d̃

= πM
y
1/φ
c

π
+

π1−φMyc
φ− 1

(

y
1/φ
c

π

)1−φ

= Mx1/φ
c +

1

φ− 1
Mx1/φ

c =
φ

φ− 1
Mx1/φ

c . (C-3)

Dividing eq. (C-2) by N yields the density, f(d), shown in eq. (4):

f(d) =







2π φ−1
φ
x
−1/φ
c d for d < d̃

2π1−φ φ−1
φ
x
1−1/φ
c d1−2φ for d ≥ d̃

(C-4)

with d̃ = π−1/2x
1/(2φ)
c .

The density is illustrated in panel (a) of Figure C-1.
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An exponential distribution of light in cities: Next, we derive the distribution of

top lights when lights within a city follow a negative exponential function instead of an

inverse power function. The following replaces assumption 4 from the main text.

Assumption 5. Within cities, the light density l(d) follows an exponential function

l(d) = L0 exp(−γd), where L0 ≥ l is the density at the center and γ > 0 is a decay

parameter.

Panel (b) of Figure C-1 illustrates the negative exponential distribution (with γ =

0.15) and inverse power distribution (with a = 0.7). Both functions exhibit a comparable

decay from the city center to the outskirts of the city. The main difference is that the

negative exponential function attains values which are not as high in the center but

decreases more quickly towards zero at the outskirts, whereas the inverse power function

has a longer tail.

Contrary to our baseline case this altered setting does not directly generate a Pareto

distribution in lights. The distribution now depends on L0, the maximum luminosity

of the center of each city. We consider three cases. In each case, we focus on the light

density f(l) conditional on L0. Using the variable transformation of eq. (4) together with

d = 1
γ
ln(L0/l) yields

f(l | L0) =







2π1−φ φ−1
φ
x
1−1/φ
c

[
1
γ
ln(L0/l)

]1−2φ

for l ≤ l̃

2π
φ− 1

φ
x−1/φ
c

1

γ
︸ ︷︷ ︸

c

ln(L0/l) for l̃ < l < L0, (C-5)

where l̃ = L0 exp(−γd̃).

This conditional density increases for dim luminosities (at the fringes of the largest

cities) and decreases from l̃ onwards. The turning point and maximum, l̃, corresponds to

the minimum size, d̃, of each city in terms of distance from center. At higher luminosities,

there are fewer and fewer pixels as these are the ones located in ever smaller rings closer

to the center.

To derive the marginal density f(l), we have to make assumptions about the

distribution of maximum luminosities L0 across cities.

Case 1: L0 is a constant, so that all cities large and small are equally bright in the

center. This is unrealistic, but mathematically simple. The marginal density of lights

f(l) equals the conditional density f(l | L0). Analyzing the top end of the distribution

c ln(L0/l) for l̃ < l < L0 we observe a near linear decrease with a slope of c d
dl

ln(L0/l) ∝
−1

l
for l close to L0. There is no power law. The assumption of a constant L0 across all

cities generates too many pixels with the highest luminosities.

Case 2: L0 follows a Pareto distribution across cities so that some city centers are

much brighter than others. Empirical evidence points in this direction (see Table A-3).
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We are only interested in the upper part of the density in eq. (C-5).4 If L0 follows the

Pareto density with η = 1 so that f(L0) = Lmin/L
2
0, with Lmin as the minimum center

luminosity, we have the joint density of l and L0 as

f(l, L0) = f(L0)f(l | L0) = c
Lmin

L2
0

ln(L0/l) for l̃max < l < Lmax and L0 > l. (C-6)

The marginal density, f(l), is found by integrating L0 out of the above

f(l) = cLmin

∫ Lmax

l

1

L2
0

ln(L0/l)dL0 = cLmin

[
ln l − lnL0 − 1

L0

]Lmax

l

= cLmin

[
1

l
− 1

Lmax

(ln(Lmax/l) + 1)

]

, (C-7)

which holds for l̃max < l < Lmax.

Case 3: Alternatively, an intermediate case for L0 is a uniform distribution between

values Lmin and Lmax with density f(L0) = (Lmax−Lmin)
−1. Cities (big and small) differ

in their maximum luminosity, but all maximum luminosities are equally likely across

cities. Following the same steps as in the second case, the marginal density is

f(l) =
c

Lmax − Lmin

∫ Lmax

l

ln(L0/l)dL0 =
c

Lmax − Lmin

[

L0(lnL0 − ln l − 1)
]Lmax

l

=
c

Lmax − Lmin

[

l + Lmax(ln(Lmax/l)− 1)
]

, (C-8)

which holds for l̃max < l < Lmax.

Cases 2 and 3 are heavy-tailed distributions which differ mathematically from the

simple Pareto. But given their heavy tails, they may be approximated by a Pareto. As

shown in Figure C-2, this works particularly well for case 2 with a Pareto distribution of

α = 1.5, while for case 3 the Pareto distributions with α = 1.2 works reasonably well.

Result 2. Based on Assumptions 1–3 and 5, as well as a sufficient variation in

maximum light intensity across cities, it follows that top lights above a threshold l̃ can be

approximated by a Pareto distribution.

In sum, when lights within cities follow a negative exponential function, a Pareto

distribution of top lights does not arise analytically in the three cases considered here.

However, depending on the exact assumptions made about differences in the maximum

brightness across cities, the resulting distribution is heavy-tailed and can be approximated

by a Pareto distribution.

4Note that the threshold l̃ depends on the random variable L0. Hence, we restrict our analysis to the
area of the density starting at the highest possible threshold value l̃max, corresponding to L0 = Lmax.
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Figure C-1 – Illustration of distributions

(a) Pixel density
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(b) Light gradient
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Notes: The left panel shows the pixel density from eq. (4) with xc = 10000 and φ = 1.5. The
right panel shows the negative exponential distribution with γ = 0.15 as well as the inverse power
distribution with a = 0.7, both start at P0 = 2000.

Figure C-2 – Approximating the theoretical densities with Pareto distributions

(a) Case 2 and Pareto with α = 1.5
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(b) Case 3 and Pareto with α = 1.2

0 500 1000 1500 2000

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

0
.0

2
0

0
.0

2
5

0
.0

3
0

Light intensity (DN)

D
e
n
s
it
y

Case 3

Pareto

Notes: The left panel shows the pixel density from eq. (C-7) with xc = 10000, φ = 1.5 and γ = 1.5.
The Pareto distribution with α = 1.5 is scaled to fit. The right panel shows the pixel density from
eq. (C-8) with xc = 10000, φ = 1.5 and γ = 1.5. The Pareto distribution with α = 1.2 is scaled to
fit.
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D Extreme value theory

As an alternative to our stylized urban economics model, we can also motivate a Pareto

distribution in top lights purely on statistical grounds using extreme value theory (EVT).

EVT deals with the probability distributions of sparse observations such as threshold

exceedances. A key result of this theory is that these quantities observe a Generalized

Pareto distribution (Coles, 2001).

More precisely, let X1, X2, . . . be a sequence of independent random variables—

such as light—with common but unknown distribution function F , and let Mn =

max{X1, . . . , Xn}. If F satisfies the extremal types theorem (Coles, 2001), so that for

large n, P[Mn > z] ≈ G(z) with G(z) as the Generalized Extreme Value distribution,

then, for a high enough threshold u, the distribution of the threshold exceedance

P[(X − u) > y|X > u] is approximately

H(y) = 1−
(

1 +
ξy

σ̃

)
−

1

ξ

, (D-1)

no matter which regular distribution X was drawn from.

This means that we will observe a Generalized Pareto distribution with parameters

ξ and σ for all lights values above a specified threshold. With ξ = 0, this reduces to

the exponential distribution and with ξ > 0 the distribution is Pareto. There is strong

evidence that the latter case holds for the lights data.

Table D-1 shows the results of fitting the Generalized Pareto distribution to various

top shares of the light distribution of the seven radiance-calibrated satellites. The fit is

very good and the estimated ξ parameters are always significantly positive. This clearly

points towards a Pareto distribution.

Figure D-1 plots the Generalized Pareto distribution against the empirical distribution

function of the radiance-calibrated data from 2010. It visualizes the close fit and confirms

the results from the previous regression.
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Table D-1 – Fitted Generalized Pareto distributions, varying thresholds

Year 1996 1999 2000 2003 2004 2006 2010 Average

Panel a) Top 5%

lnσ 4.2422 4.5197 4.7304 4.7560 4.7136 4.5239 4.4477 4.5619
(0.0062) (0.0051) (0.0053) (0.0052) (0.0050) (0.0051) (0.0049) [0.1860]

ξ 0.4917 0.3136 0.2792 0.2354 0.2398 0.1972 0.1652 0.2746
(0.0056) (0.0043) (0.0044) (0.0042) (0.0040) (0.0040) (0.0038) [0.1075]

Threshold 63 67 74 95 91 75 65 –
Observations 96,685 116,858 106,914 100,094 106,899 99,486 107,745 –

Panel b) Top 4%

lnσ 4.5136 4.6989 4.9099 4.8569 4.8241 4.6278 4.5574 4.7127
(0.0066) (0.0055) (0.0055) (0.0057) (0.0054) (0.0055) (0.0052) [0.1545]

ξ 0.3720 0.2401 0.2020 0.2051 0.2051 0.1605 0.1212 0.2152
(0.0057) (0.0044) (0.0044) (0.0045) (0.0042) (0.0043) (0.0039) [0.0790]

Threshold 76 85 96 119 114 94 82 –
Observations 77,348 93,484 85,481 80,075 85,489 79,589 86,195 –

Panel c) Top 3%

lnσ 4.8260 4.8674 5.0702 4.9841 4.9127 4.7153 4.6387 4.8592
(0.0069) (0.0060) (0.0060) (0.0063) (0.0061) (0.0062) (0.0058) [0.1491]

ξ 0.2266 0.1753 0.1387 0.1629 0.1873 0.1356 0.0944 0.1601
(0.0056) (0.0047) (0.0045) (0.0049) (0.0047) (0.0047) (0.0042) [0.0424]

Threshold 98 114 131 154 150 123 108 –
Observations 58,010 70,112 64,110 60,057 64,133 59,691 64,646 –

Panel d) Top 2%

lnσ 5.0520 5.0042 5.1151 5.0807 4.9771 4.7847 4.6836 4.9568
(0.0079) (0.0070) (0.0073) (0.0076) (0.0075) (0.0075) (0.0070) [0.1614]

ξ 0.1355 0.1332 0.1438 0.1432 0.1933 0.1266 0.0903 0.1380
(0.0060) (0.0053) (0.0055) (0.0057) (0.0058) (0.0056) (0.0050) [0.0304]

Threshold 147 166 199 215 208 169 151 –
Observations 38,673 46,742 42,740 40,039 42,755 39,795 43,097 –

Panel e) Top 1%

lnσ 5.2035 5.1025 5.2287 5.1729 5.1013 4.8650 4.7009 5.0535
(0.0109) (0.0099) (0.0103) (0.0108) (0.0109) (0.0108) (0.0100) [0.1936]

ξ 0.0961 0.1262 0.1374 0.1483 0.2037 0.1324 0.1163 0.1372
(0.0082) (0.0074) (0.0078) (0.0082) (0.0086) (0.0082) (0.0074) [0.0337]

Threshold 259 275 319 332 315 255 230 –
Observations 19,337 23,371 21,370 20,019 21,378 19,897 21,548 –

Notes: The table reports parameter estimates from fitted the Generalized Pareto distribution shown
in eq. (D-1). The input data are a 10% representative sample of all non-zero lights in the radiance-
calibrated data above the defined threshold at the pixel level, where each pixel is 30 × 30 arc
seconds. The last column reports the point average of the seven satellites and its standard deviation
in brackets.

xv



Figure D-1 – Generalized Pareto CDF versus EDF, radiance-calibrated data in 2010
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Notes: Illustration of Generalized Pareto CDF fitted to the data and the empirical distribution
function (EDF). The EDF and Generalized Pareto CDF are fitted to the top 4% of stable lights in
2010. The input data are a 10% representative sample of all non-zero lights of the radiance-calibrated
data at the pixel level, where each pixel is 30× 30 arc seconds.
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E Additional results using the radiance-calibrated

data

This section complements the analysis in the paper by proving additional robustness

checks of our Pareto hypothesis using the seven radiance-calibrated satellites.

Visual Inspection: Panel (a) of Figure E-1 shows Zipf plots for the top 2% of lights

for each of the seven radiance-calibrated satellites. A Zipf plot is a visualization of the

Pareto survival function in logs. A linear Zipf plot is usually considered evidence in

favor of the Pareto distribution, but its practical relevance is being contested (Cirillo,

2013). Our plots for the lights data are qualitatively similar to those of the top incomes

literature, in that they display linear sections together with some initial curvature and

outliers at the end.5 It is well-known that Zipf plots often deviate from linearity at the

very top since fewer and fewer values are observed at the extremes. Sometimes this is

addressed by removing the very top. We use logarithmic bins so that the size of the

bins increases by a multiplicative factor (Newman, 2005). The sensitivity of Zipf plots

to outliers is compounded by instability and measurement errors afflicting the radiance-

calibrated satellites. While we conclude that the Zipf plot using the radiance-calibrated

data is ambiguous, we obtain a near-linear Zipf plot using the superior VIIRS data (see

the next section).

Panel (b) of Figure E-1 provides another graphical test for the Pareto distribution

based on ‘Van der Wijk’s Law’. The Pareto distribution is unique in that the average

above some level y is proportional to y at all points in the tail, with a factor of

proportionality equal to α
α−1

> 1. The graph plots, for each DN on the x-axis, the

average luminosity of all pixels brighter than this value on the y-axis. As expected, we

observe a linear relationship with a slope above unity.

Tests against the lognormal distribution: As a robustness check, we pit the Pareto

distribution against other plausible candidates. We pay particular attention to the log-

normal distribution, since it is commonly used to describe the complete distribution of

incomes or city sizes.

Table E-1 shows the results from separate regressions of the empirical distribution

function on the Pareto CDF and the lognormal CDF based on the top 4% of the data.

The estimated coefficient for the Pareto CDF is closer to unity and the R2 is substantially

larger than in the lognormal counterpart (0.98 vs. 0.83).

5Working with any top share, from the top 5% to the top 1% gives qualitatively similar results, even
if the case for a Pareto distribution tends to be stronger the higher we set the threshold. This is in line
with the empirical literature on Pareto applications in other fields.
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Figure E-2 visualizes this difference in fit for the year 2010. The lognormal CDF fits

the data poorly, while the Pareto CDF is always closer to the empirical distribution.

Unrestricted rank regressions: Recall that for Pareto-distributed observations yi,

i = 1, ...N , we have rank(yi) ≈ Nyαc y
−α
i , or, in logarithms log rank(yi)−logN ≈ α log yc−

α log yi. Hence, in the regression

log
(

rank(yi)−
1

2

)

− logN = α1 log yc + α2 log yi + ǫ (E-1)

only the Pareto distribution satisfies the null hypothesis that −α1 = α2 with α2 < 0. As

before, we follow Gabaix and Ibragimov (2011) and subtract one half from the rank to

improve the OLS estimation of the tail exponent in the rank regression.

Table E-2 reports the OLS rank regression results of eq. (E-1) for all seven satellites

at various different thresholds, i.e. the top 5% to top 1%. The two coefficients are usually

very close and the R2s are high (0.96–0.99).6

The Hill estimator: If the null hypothesis −α1 = α2 = α is enforced in eq. (E-1), one

can directly obtain the parameter estimate for the Pareto α. In the main text we estimate

this parameter using OLS rank regressions. As a robustness check, we now use the Hill

estimator (Hill, 1975), α̂Hill = (N − 1)
(
∑N−1

i=1 log yi − log yc

)
−1

, for the restricted rank

regression

log rank(yi)− logN ≈ α log yc − α log yi. (E-2)

Under the assumption of a Pareto distribution, the Hill estimator equals the efficient

maximum likelihood estimator and is known for its superior properties for fitting the tail

of the Pareto distribution (Soo, 2005, Eeckhout, 2009). The standard errors are given by

α̂Hill/
√
N − 3 (see Gabaix, 2009).

Table E-3 report the results for all seven satellites at various different thresholds, i.e.

the top 5% to top 1%. The Pareto parameters obtained using the Hill estimator are very

similar to the OLS estimates in the main text. For the top 3-4%, the values are between

1.3 and 1.6 for the seven satellites, very close to the OLS average parameter estimate of

1.5. For higher thresholds, we observe also the same increase in the parameter estimate

that we observe in the OLS results.

6Note that formal statistical tests, e.g. tests of coefficient equality or Kolmogorov-Smirnoff tests, do
not make much sense in huge samples such as ours. Gabaix and Ioannides (2004, p. 2350) capture this
nicely: “with an infinitely large dataset one can reject any non-tautological theory.” The extremely small
standard errors lead to overrejections of the null hypothesis unless the empirical value equals exactly the
theoretical value.
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Figure E-1 – Zipf plot and Van der Wijk’s plot
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Notes: Popular graphical tests for an approximate Pareto distribution in top lights. Panel (a) shows
the Zipf plot for the top 2% of all pixels. The figure uses logarithmic binning to reduce noise and
sampling errors in the right tail of the distribution (see Newman, 2005). There are about 100 bins
in the tail, where the exact number depends on the range of the input data. Panel (b) demonstrates
Van der Wijk’s law, which states that the average light above some value u is proportional to u,
this is E[y|y > u] ∝ u. Here, too, the data is the top 2% of all pixels. The input data are a 10%
representative sample of all non-zero lights in the radiance-calibrated data at the pixel level.

xix



Table E-1 – Regression of the EDF on theoretical CDFs, top 4%

Year 1996 1999 2000 2003 2004 2006 2010 Average

Panel a) Pareto CDF on RHS

Slope 1.0108 1.0551 1.0616 1.0575 1.0746 1.0722 1.0796 1.0588
(0.0003) (0.0004) (0.0005) (0.0004) (0.0004) (0.0005) (0.0005) [0.0231]

Constant -0.0320 -0.0668 -0.0746 -0.0666 -0.0787 -0.0784 -0.0858 -0.0690
(0.0002) (0.0002) (0.0003) (0.0002) (0.0003) (0.0003) (0.0003) [0.0177]

R2 0.9914 0.9866 0.9802 0.9884 0.9869 0.9860 0.9831 –
Panel b) Lognormal CDF on RHS

Slope 0.9004 0.9265 0.9181 0.9387 0.9520 0.9472 0.9488 0.9331
(0.0014) (0.0016) (0.0018) (0.0014) (0.0014) (0.0014) (0.0015) [0.0190]

Constant -0.1653 -0.2186 -0.2238 -0.1954 -0.2088 -0.2031 -0.2179 -0.2047
(0.0011) (0.0013) (0.0015) (0.0011) (0.0011) (0.0011) (0.0012) [0.0200]

R2 0.8496 0.7913 0.7626 0.8508 0.8467 0.8480 0.8268 –

Notes: The table reports results of a regression of the empirical distribution function (EDF) on the
Pareto or lognormal CDF, using the top 4% of the data. The data are a 10% representative sample
of all non-zero lights in the radiance-calibrated data at the pixel level, where each pixel is 30×30 arc
seconds. The last column reports the point average of the seven satellites and its standard deviation
in brackets.

Figure E-2 – Pareto and lognormal CDF versus EDF, radiance-calibrated lights in 2010
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Notes: Illustration of the difference between the Pareto and lognormal CDFs fitted to the data and
the empirical distribution function (EDF). Note that the lognormal distribution was fitted to the
whole distribution rather than the tail because of its unimodal shape, while the Pareto distribution
is estimated only on the tail. For comparison, we adjust the CDFs so that they all start at the
top 4% of radiance-calibrated lights in 2010. The input data are a 10% representative sample of
all non-zero lights in the radiance-calibrated data at the pixel level, where each pixel is 30× 30 arc
seconds.
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Table E-2 – Unrestricted rank regressions

Year 1996 1999 2000 2003 2004 2006 2010 Average

Panel a) Top 5%

yi -1.4334 -1.4996 -1.4630 -1.6903 -1.6933 -1.7388 -1.7170 -1.6050
(0.0012) (0.0012) (0.0013) (0.0013) (0.0013) (0.0014) (0.0015) [0.1330]

yc 1.4736 1.5632 1.5318 1.7539 1.7582 1.8087 1.7936 1.6690
(0.0014) (0.0015) (0.0016) (0.0016) (0.0015) (0.0017) (0.0018) [0.1405]

R2 0.9694 0.9651 0.9600 0.9701 0.9721 0.9677 0.9620 0.9666
Observations 96,685 116,858 106,914 100,095 106,899 99,487 107,745 104,955

Panel b) Top 4%

yi -1.5130 -1.6328 -1.6165 -1.8403 -1.8513 -1.9101 -1.9056 -1.7528
(0.0015) (0.0014) (0.0016) (0.0016) (0.0014) (0.0017) (0.0018) [0.1612]

yc 1.5618 1.6974 1.6870 1.8978 1.9132 1.9767 1.9804 1.8163
(0.0017) (0.0017) (0.0019) (0.0018) (0.0016) (0.0019) (0.0020) [0.1655]

R2 0.9662 0.9661 0.9623 0.9725 0.9759 0.9711 0.9658 0.9685
Observations 77,348 93,484 85,482 80,075 85,489 79,590 86,196 83,952

Panel c) Top 3%

yi -1.6609 -1.8385 -1.8624 -2.0491 -2.0633 -2.1470 -2.1746 -1.9708
(0.0019) (0.0018) (0.0019) (0.0019) (0.0016) (0.0020) (0.0021) [0.1882]

yc 1.7225 1.9017 1.9340 2.1044 2.1174 2.2068 2.2429 2.0328
(0.0022) (0.0020) (0.0022) (0.0021) (0.0018) (0.0022) (0.0024) [0.1872]

R2 0.9646 0.9695 0.9691 0.9761 0.9811 0.9762 0.9721 0.9727
Observations 58,011 70,115 64,111 60,058 64,134 59,692 64,647 62,967

Panel d) Top 2%

yi -1.9711 -2.1628 -2.2315 -2.3687 -2.3478 -2.4809 -2.5663 -2.3042
(0.0025) (0.0023) (0.0022) (0.0023) (0.0018) (0.0024) (0.0025) [0.2009]

yc 2.0329 2.2180 2.2831 2.4156 2.3880 2.5295 2.6215 2.3555
(0.0029) (0.0025) (0.0025) (0.0025) (0.0020) (0.0026) (0.0027) [0.1974]

R2 0.9698 0.9757 0.9798 0.9825 0.9871 0.9826 0.9807 0.9797
Observations 38,673 46,742 42,740 40,039 42,756 39,794 43,097 41,977

Panel e) Top 1%

yi -2.5471 -2.7216 -2.7241 -2.8508 -2.7006 -2.9769 -3.1652 -2.8123
(0.0039) (0.0031) (0.0031) (0.0030) (0.0027) (0.0032) (0.0029) [0.2049]

yc 2.5922 2.7593 2.7596 2.8823 2.7258 3.0097 3.2005 2.8471
(0.0043) (0.0034) (0.0034) (0.0033) (0.0029) (0.0035) (0.0031) [0.2031]

R2 0.9781 0.9849 0.9864 0.9889 0.9895 0.9886 0.9911 0.9868
Observations 19,337 23,373 21,372 20,020 21,377 19,898 21,551 20,990

Notes: The table reports OLS results obtained from the unrestricted rank regressions eq. (E-1) at
various relative thresholds. The input data are a 10% representative sample of all non-zero lights
in the radiance-calibrated data above the defined threshold at the pixel level, where each pixel is
30× 30 arc seconds. Standard errors are in parentheses. The last column reports the point average
of the seven satellites and its standard deviation in brackets.
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Table E-3 – Parameter estimates from rank regressions (Hill estimator)

Year 1996 1999 2000 2003 2004 2006 2010 Average

Panel a) Top 5%

Pareto α̂ 1.2286 1.1833 1.1289 1.3112 1.3100 1.3356 1.3012 1.2570
(0.0040) (0.0035) (0.0035) (0.0041) (0.0040) (0.0042) (0.0040) [0.0780]

Observations 96,685 116,858 106,914 100,095 106,899 99,487 107,745 –

Panel b) Top 4%

Pareto α̂ 1.2487 1.2689 1.2233 1.4431 1.4315 1.4666 1.4333 1.3593
(0.0045) (0.0042) (0.0042) (0.0051) (0.0049) (0.0052) (0.0049) [0.1065]

Observations 77,348 93,484 85,482 80,075 85,489 79,590 86,196 –

Panel c) Top 3%

Pareto α̂ 1.2948 1.4152 1.3805 1.6023 1.6234 1.6672 1.6478 1.5188
(0.0054) (0.0053) (0.0055) (0.0065) (0.0064) (0.0068) (0.0065) [0.1509]

Observations 58,011 70,115 64,111 60,058 64,134 59,692 64,647 –

Panel d) Top 2%

Pareto α̂ 1.5068 1.6869 1.7536 1.8920 1.9325 1.9860 2.0095 1.8239
(0.0077) (0.0078) (0.0085) (0.0095) (0.0093) (0.0100) (0.0097) [0.1832]

Observations 38,673 46,742 42,740 40,039 42,756 39,794 43,097 –

Panel e) Top 1%

Pareto α̂ 2.0363 2.2458 2.2613 2.4101 2.3582 2.5190 2.6558 2.3552
(0.0146) (0.0147) (0.0155) (0.0170) (0.0161) (0.0179) (0.0181) [0.2011]

Observations 19,337 23,373 21,372 20,020 21,377 19,898 21,551 –

Notes: The table reports the results of the restricted rank regression eq. (E-2) using the Hill
estimator. The data are a 10% representative sample of all non-zero lights in the radiance-calibrated
data at the pixel level, where each pixel is 30 × 30 arc seconds. The last column reports the point
average of the seven satellites and its standard deviation in brackets.
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F Additional results using the VIIRS data

Since October 2011, the first satellite of the Suomi National Polar Partnership Visible

Infrared Imagining Radiometer Suite (NPP-VIIRS) has been in orbit. The VIIRS day-

night-band (DNB) on-board sensors have a much higher native resolution of 15 arc

seconds, are radiometrically calibrated, do not suffer from top-coding, and record a

physical quantity (radiance). This section complements the analysis in the paper by

proving additional robustness checks of our Pareto hypothesis using this new data.

Although the new system is undoubtedly superior in many respects, comparability

with the previous series is limited for at least two reasons: i) the first annual VIIRS

composite made available by NOAA refers to the year 2015, so that there is no temporal

overlap with the 1992-2013 DMSP-OLS series, ii) the VIIRS satellites have an overpass

time around midnight, in contrast to the evening hours of the DMSP-OLS satellites,

so that it is not entirely clear what kind of production and consumption activity they

capture (Elvidge et al., 2014, Nordhaus and Chen, 2015). While we do not rely on the

VIIRS data for our replacement procedure, we use the first VIIRS cross-section from 2015

as another robustness check for whether the Pareto distribution holds. The VIIRS data

are particularly insightful in this respect because of their superior quality.

To compare the higher resolution VIIRS image to the DMSP data, we resample the

raster to the DMSP resolution and then extract radiances of each pixel at the locations

of the 10% sample that we have been using thus far. Naturally, there are considerable

differences in the scale since the VIIRS-DNB records radiance. Note that radiance is

measured in nano watt per steradian per square centimeter (10−9Wcm−2sr−1). The

difference in scale is reflected in the summary statistics of the VIIRS data. The mean is

3.98, the standard deviation is 18.65, and the maximum is 6567.42. The spatial Gini is

much higher using the VIIRS data than in the radiance-calibrated data (0.79 vs. 0.60-

0.65) which is owed to their improved sensors and finer resolution. Nevertheless, the top

tail of the light distribution essentially exhibits the same properties.

Figure F-1 shows the Zipf plot for the VIIRS data. The shape is nearly linear, even

high up in the tail and displays less curvature than the corresponding plot for the radiance-

calibrated data. This also suggests that the radiance-calibration process introduces noise

and understates the Paretian nature of night lights.

Table F-1 replicates the results of the rank regressions from the previous section using

the VIIRS data. The results are qualitatively similar to those obtained with the radiance-

calibrated data, but some small differences are notable. In particular, the estimated shape

parameters are a bit higher for top shares around 3% to 5% but then also appear to be

more stable in the upper tail. Since the VIIRS data are from five years after the most

recent radiance-calibrated image and have a different overpass time, it is difficult to

identify the source of these discrepancies.
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Figure F-1 – Zipf plot using the top 2% of pixels in the VIIRS data
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Notes: The figure shows a Zipf plot for the top 2% of all pixels of the VIIRs data, after resampling
the data to the DMSP-OLS grid and resolution. The figure uses logarithmic binning to reduce noise
and sampling errors in the right tail of the distribution (see Newman, 2005). There are about 140
bins in the tail, where the exact number depends on the range of the input data. The VIIRs pixels
correspond to the same 10% representative sample of all non-zero lights in the radiance-calibrated
data at the pixel level obtained from Hsu et al. (2015) and used in the rest of the paper.
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Table F-1 – Rank regressions based on the VIIRS data in 2015

Unrestricted regressions Hill estimates Restricted regressions

Panel a) Top 5%

yi -1.9603 α 1.5876 α 1.7331
(0.0013) (0.0065) (0.0100)

yc 2.0405
(0.0015)

R2 0.9879
Observations 59,633 59,633 59,633

Panel b) Top 4%

yi -2.0831 α 1.7331 α 1.8747
(0.0013) (0.0079) (0.0121)

yc 2.1479
(0.0015)

R2 0.9909
Observations 47,705 47,705 47,705

Panel c) Top 3%

yi -2.2150 α 1.9144 α 2.0419
(0.0014) (0.0101) (0.0153)

yc 2.2622
0.0016

R2 0.9933
Observations 35,780 35,780 35,780

Panel b) Top 2%

yi -2.3438 α 2.1671 α 2.2481
(0.0017) (0.0140) (0.0206)

yc 2.3665
(0.0019)

R2 0.9939
Observations 23,854 23,854 23,854

Panel e) Top 1%

yi -2.3778 α 2.4716 α 2.4235
(0.0033) (0.0226) (0.0314)

yc 2.3682
(0.0036)

R2 0.9888
Observations 11,927 11,927 11927

Notes: The table uses the VIIRS data to repeat three regressions which were conducted with the
radiance-calibrated data before: the unrestricted OLS rank regression eq. (E-1) and the restricted
regression eq. (E-2) using both the OLS and the Hill estimator. Standard errors are reported
in paretheses. For the OLS restricted rank regression, these are the asymptotic standard errors
computed as (2/N)1/2. The data are a 10% representative sample of all non-zero lights in the
radiance-calibrated data at the pixel level, where each pixel is 30× 30 arc seconds.
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G An analytical top-coding correction

Researchers are often interested in aggregate measures, such as average luminosity or

light inequality in a region or a country. Here we present simple formulas to correct these

summary statistics for top-coding. These corrections work with arbitrary thresholds and

Pareto shape parameters.

Mean luminosity: The top-coding corrected mean luminosity µ of a country or region

is simply the weighted average of the bottom and top means µB and µT . If the latter is

the mean of a Pareto distribution starting at yc, we have

µ = ωBµB + (1− ωB)µT = ωBµB + (1− ωB)
α

α− 1
yc (G-1)

where ωB and ωT = 1 − ωB are the shares of pixels below and above the threshold. A

simple numerical illustration shows how correcting for top-coding drives up the mean

luminosity. If top-coding starts at yc = 55, affects 5% of the study area of interest, α

is 1.5 and mean luminosity in the non-top-coded pixels is µB = 10, then the corrected

mean luminosity is 17.75 rather than 12.25.

Spatial Gini coefficients: The overall Gini coefficient can be written as the weighted

sum of the bottom-share and top-share Ginis (i.e., the within-group Gini) as well as the

difference between the top share of total lights minus the top share of pixels (i.e., the

between-group Gini), such that

G = ωBφBGB + ωTφTGT + [φT − ωT ], (G-2)

where the shares of all light accruing to the top and bottom groups are φB = ωBµB/µ

and φT = ωTµT/µ, and GT = 1/(2α−1). A greater share of top-coded pixels ωT , brighter

top-coded pixels φT , and a greater spread in the distribution of the top-coded data GT

all increase the size of the correction.

The above decomposition of the Gini coefficient can be derived by defining the Gini

coefficient over multiple groups as in Mookherjee and Shorrocks (1982)

G =
1

2N2µ

∑

i

∑

j

|yi − yj| (G-3)

=
1

2N2µ

∑

k




∑

i∈Nk

∑

j∈Nk

|yi − yj|+
∑

i∈Nk

∑

j /∈Nk

|yi − yj|



 (G-4)

=
∑

k

(
Nk

N

)2
µk

µ
Gk +

1

2N2µ

∑

k

∑

i∈Nk

∑

j /∈Nk

|yi − yj| . (G-5)
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where GK is the within group Gini coefficient of group k. The second term is a measure

of group overlap including their between group differences.

Perfect separation (no overlap between groups) implies
∑

i∈Nk

∑

j∈Nh
|yi − yj| =

NkNh |µk − µh|. Hence, we can simplify equation eq. (G-5) to

G =
∑

k

(
Nk

N

)2
µk

µ
Gk +

∑

k

∑

h

NkNh

2N2µ
|µk − µh| . (G-6)

With two bottom and top groups k, h ∈ {B, T} (where µT > µB) and some algebra,

this becomes

G =

(
NB

N

)2
µB

µ
GB +

(
NT

N

)2
µT

µ
GT +

[(
NT

N

)2
µT

µ
− NT

N

]

. (G-7)

Now define the pixel shares below and above the threshold as ωB and ωT , where

ωT = 1 − ωB and the group’s share of all income (light) as φB = ωB
µB

µ
and φT = ωT

µT

µ

to obtain eq. (G-2) above.
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H Characteristics of the corrected data

In this section we compare the back-on-the-envelop analytical corrections from the

previous section with our corrected data at the pixel level, examine the correlations

between our corrected data and the radiance calibrated data, and discuss the size of the

top-coding correction around the world.

Table H-1 reports the mean luminosities and global Gini coefficients before and after

the correction for each satellite, using both the analytic formulas and the data corrected

at the pixel level. Our geo-referenced pixel-level replacement comes close to the analytic

solutions but is generally more conservative (due to the fixed upper bound). Mean

luminosity increases on average from 12.7 DN to 15.3–16.6 DN and inequality in lights

from 0.47 to 0.56–0.59.

Table H-2 reports mean luminosity and the Gini coefficient of inequality for 2010, using

a wider range of parameters as robustness checks in the analytical correction eq. (G-2).

Working with a smaller (larger) parameter than our benchmark α = 1.5 implied more

(less) inequality in the tail of the light distribution. The corrections are consequently

larger (smaller). We can also see that parameter values of 1.4–1.6 only lead to very small

differences in the magnitude of the correction. Also, using a higher α does not change

the magnitude of the correction as much as using a smaller α, as the comparison of the

extreme values of 1.2 and 1.8 shows.

Figure H-1 plots the time series graph of global inequality in lights from 1992 to

2013, both before and after the top-coding correction based on eq. (G-2). Parameter

values of 1.4 and 1.6 serve as comparison bands for the benchmark case of 1.5. The

global distribution of lights became slightly more unequal over the 1990s, remained flat

in the first decade of the new millennium and then became temporarily more equal in the

aftermath of the global financial crises and great recession. However, this year-to-year

variation is completely swamped by the size of the top-coding correction.

Table H-3 provides another comparison check for our pixel-level corrected data. It

shows the correlations between the corrected lights and the radiance-calibrated data for

the seven years where both are available. These figures refer to the whole distribution,

not just the top. Remember that in the correction procedure, we only rely on the ranks

for the top, not the precise radiance-calibrated values, and infer values from the Pareto

distribution. It is all the more remarkable that our corrected values turn out to be

strongly correlated to the radiance-calibrated values, with correlations of 0.94–0.96 for

all seven available years.

The global summary statistics presented so far hide a lot of between-country

heterogeneity. Figure H-2 illustrates the size of the correction in different countries with

various scatter plots. As expected, the same characteristics that drive the number of

top-coded pixels (see Section 2 in the paper) turn out to be predictive of the size of
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the correction in terms of country-wide mean luminosity and inequality in light. The

correction is strongly increasing in GDP per capita, weakly in country size and moderately

in population density. Numerous developing countries experience sizable corrections (such

as Egypt, Paraguay or Mexico). City states, such as Singapore, have large top-coding

corrections, as do smaller countries, like Israel and Estonia. Nevertheless, even large

countries like the US experience a sizable increase in both mean luminosity (plus 7 DN)

and the Gini coefficient (plus 14 percentage points). No single factor captures all the

relevant heterogeneity.
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Table H-1 – Satellite level statistics of the top-coding correction

Satellite Top Top share (light) Mean luminosity Gini coefficient
share Unadj Adj Unadj Form Pixel Unadj Form Pixel
(pixels) Adj Adj Adj Adj

F101992 0.0381 0.1663 0.3096 13.83 17.81 16.70 0.4390 0.5626 0.5334
F101993 0.0312 0.1568 0.2938 11.96 15.23 14.28 0.4593 0.5737 0.5456
F101994 0.0349 0.1754 0.3207 12.02 15.67 14.60 0.4783 0.5980 0.5684
F121994 0.0420 0.1733 0.3176 14.65 19.04 17.74 0.4353 0.5634 0.5316
F121995 0.0376 0.1733 0.3174 13.09 17.02 15.85 0.4580 0.5813 0.5505
F121996 0.0351 0.1670 0.3068 12.69 16.37 15.25 0.4607 0.5801 0.5494
F121997 0.0394 0.1766 0.3210 13.45 17.57 16.31 0.4540 0.5799 0.5477
F121998 0.0418 0.1816 0.3276 13.89 18.25 16.90 0.4474 0.5774 0.5436
F121999 0.0467 0.1915 0.3412 14.74 19.62 18.08 0.4447 0.5802 0.5449
F141997 0.0316 0.1739 0.3169 10.98 14.29 13.28 0.4876 0.6047 0.5747
F141998 0.0305 0.1680 0.3067 10.94 14.13 13.13 0.4883 0.6023 0.5720
F141999 0.0278 0.1648 0.3011 10.15 13.06 12.13 0.4895 0.6017 0.5714
F142000 0.0318 0.1689 0.3062 11.34 14.67 13.59 0.4852 0.6003 0.5687
F142001 0.0350 0.1817 0.3276 11.64 15.30 14.16 0.4856 0.6069 0.5754
F142002 0.0377 0.1872 0.3375 12.14 16.08 14.90 0.4896 0.6126 0.5818
F142003 0.0382 0.1930 0.3409 11.96 15.96 14.65 0.4928 0.6177 0.5836
F152000 0.0370 0.1685 0.3063 13.25 17.13 15.89 0.4399 0.5647 0.5308
F152001 0.0354 0.1645 0.3011 12.93 16.64 15.46 0.4463 0.5679 0.5351
F152002 0.0372 0.1700 0.3085 13.18 17.08 15.82 0.4465 0.5710 0.5370
F152003 0.0270 0.1582 0.2894 10.28 13.11 12.17 0.4982 0.6055 0.5751
F152004 0.0276 0.1642 0.2979 10.08 12.97 12.00 0.5080 0.6163 0.5853
F152005 0.0279 0.1604 0.2953 10.44 13.36 12.43 0.5115 0.6171 0.5886
F152006 0.0293 0.1666 0.2988 10.56 13.63 12.55 0.5135 0.6217 0.5892
F152007 0.0279 0.1547 0.2844 10.74 13.68 12.69 0.5049 0.6099 0.5795
F162004 0.0340 0.1734 0.3129 11.82 15.38 14.23 0.4641 0.5863 0.5528
F162005 0.0285 0.1642 0.2993 10.44 13.43 12.46 0.4926 0.6040 0.5732
F162006 0.0348 0.1707 0.3041 12.26 15.91 14.61 0.4714 0.5908 0.5546
F162007 0.0403 0.1861 0.3302 13.05 17.28 15.86 0.4624 0.5916 0.5554
F162008 0.0395 0.1832 0.3285 12.97 17.11 15.78 0.4702 0.5961 0.5622
F162009 0.0417 0.1862 0.3356 13.50 17.87 16.54 0.4694 0.5966 0.5644
F182010 0.0591 0.2033 0.3614 17.55 23.73 21.89 0.4258 0.5720 0.5361
F182011 0.0494 0.2020 0.3595 14.78 19.95 18.41 0.4552 0.5936 0.5598
F182012 0.0576 0.2118 0.3734 16.44 22.45 20.68 0.4361 0.5838 0.5481
F182013 0.0578 0.2151 0.3800 16.23 22.28 20.55 0.4389 0.5876 0.5530

Average 0.0374 0.1765 0.3194 12.65 16.56 15.34 0.4691 0.5917 0.5595

Notes: The table reports summary statistics of the global lights data before the top-coding correction
and after the analytical, formula-based correction at the aggregate level (eq. (G-1) and eq. (G-2)) as
well as the pixel-level correction from the paper. Column 1 reports the share of pixels above 55 DN,
Column 2 and 3 the share of lights emitted by these top pixels respectively in the unadjusted and
adjusted data set. Columns 4-6 and 7-9 report the mean luminosity and Gini coefficient, respectively
for the unadjusted data, the analytical, formula-based correction and the pixel-level corrected data.
All corrections use α = 1.5 and yc = 55 for the Pareto tail.
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Table H-2 – Correction of global mean and Gini coefficient in 2010, different parameters

Unadj. Pareto parameter α =

1.2 1.3 1.4 1.5 1.6 1.7 1.8

Mean luminosity 17.55 33.49 28.07 25.36 23.73 22.65 21.88 21.30
Spatial Gini 0.4258 0.6954 0.6372 0.5990 0.5720 0.5519 0.5363 0.5240

Notes: The table computes the top-coding corrected mean and Gini coefficient of global inequality
in lights for the year 2010 with different α parameters based on eq. (G-1) and eq. (G-2) with yc = 55.
The input data are a representative 10% sample of non-zero lights from satellite F182010.

Figure H-1 – Global Gini coefficient in lights before and after the correction

1995 2000 2005 2010
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Notes: Illustration of the global top-coding correction. The figure shows global inequality in
lights calculated by eq. (G-2) using the specified Pareto shape parameters. The input data are
a representative 10% sample of non-zero lights. For years when more than two satellites flew
concurrently, the values were averaged.
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Table H-3 – Correlations between corrected data and radiance-calibrated data

Radiance-calibrated

Corrected 1996 1999 2000 2003 2004 2006 2010

1996 0.9546
1999 0.9543
2000 0.9587
2003 0.9454
2004 0.9592
2006 0.9614
2010 0.9530

Notes: The table reports correlations between the corrected lights and the radiance calibrated lights
for the seven years where the radiance-calibrated data are available. The corrections are based on
satellites F121996, F141999, F152000, F152003, F162004, F162006 and F182010.
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Figure H-2 – Size of the correction and country characteristics

(a) Mean correction vs. GDP per capita
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(b) Gini correction vs. GDP per capita
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(c) Mean correction vs. log area
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(d) Gini correction vs. log area

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

● ●

●

●

●

●

●

●●

●

● ●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

5 10 15

0
.0

0
.1

0
.2

0
.3

0
.4

Log land area

S
iz

e
 o

f 
c
o

rr
e

c
ti
o

n
 (

in
 G

in
i)

AGO

ARE

ARG

AUS

BEL

BHR

BLR
BOL

BRABRN
CAN

CHL

CHNEGY

ESP
EST

FIN
GBR

HKG

ISR

JOR

JPN

KAZ

KOR

KWT

LBYLVA

MEX

MYSNOR

PRI PRY

QAT

RUS

SAU

SGP

TKM

TTO USA
VUT

(e) Mean correction vs. log density

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●●

●

●

● ●

●
●

●

●

●
●

● ●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●
●●

●

●

●

●●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

0 2 4 6

0
5

1
0

1
5

Log population density

S
iz

e
 o

f 
c
o

rr
e

c
ti
o

n
 (

in
 D

N
)

AFG

AGO

ARG
BEL

BGD

BLR

BOL

BRA

BRN

CAN

CHL

CHN

EGY

ESP

EST

FIN

GBR

ISR

JOR

JPN

KOR

LBY
LVA MEX

MUS

MYS

NLD

NOR

OMN

PRI

PRT

PRY

PSE

SAU

SWE

TTO

USAVUT

(f) Gini correction vs. log density
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I Benchmarking exercises

Light-output elasticities at the national level: To validate our corrected data, we

estimate light-output elasticities at the national level in the spirit of Henderson et al.

(2012). Henderson et al. (2012) run fixed effects regressions of log GDP on log lights per

square kilometer. They report an income elasticity of lights around 0.28. We replicate

these results using a matched sample of the stable lights data, our top-coding corrected

lights and the radiance-calibrated data for the seven years which all three data sources

have in common over the period from 1996 to 2010.

Table I-1 reports the corresponding estimates and shows that—even at the highly

aggregated country level—our top-coding correction leads to marginal improvements.

The corrected data always yield the highest within-R2, no matter if we use lights

per square kilometer or control for population density (which implies a per capita

interpretation7). As expected, the results are not materially different at the national

level, so that for an analysis of the light-output relationship at such a high level of

aggregation either data can be used without explicitly considering the role of top-coding.

Note that it is not clear whether we should expect the corrected data to deliver regression

coefficients which are closer to the radiance-calibrated data. The spectral mixing process

of Hsu et al. (2015) created a lot of noise in areas which are not top-coded and provide

the overwhelming share of the variation analyzed by these regressions.

Light-output elasticities at the subnational level: Lights are particularly useful

as a proxy for economic activity at the regional level or other smaller geographies. For

this benchmarking exercise, we use Germany as an example of a rich and decentralized

economy. Germany publishes regional accounts down to the district level.8 We compile

annual data on GDP and population for 401 districts from 2000 until 2013. We use

these data to analyze the cross-sectional and panel relationship between output and light

intensity in Germany, with a particular emphasis on whether light intensity contains any

information on economic activity beyond population density.

Table I-2 compares the light-output elasticities obtained from cross-sectional

regressions using the stable lights data (columns 1 to 3) to the corrected data (columns 4

to 6). In both sets of estimates, we first introduce state and then so-called ‘government

region’ fixed effects. This purges some of the confounding variation, such as persistent

differences between West and East Germany.9 Columns (1) to (3) suggest that there is

7To see this, note that ln (yit/popit) = β ln (lightsit/popit) + γ ln (popit) is equivalent to ln yit =
β ln lightsit − (1− β − γ) ln popit, regardless of whether this is specified in levels or in terms of densities.

8Germany is administratively divided into states (Bundesländer), government regions
(Regierungsbezirke), districts (Kreise) and municipalities (Gemeinden). These correspond to the
European Nomenclature of Territorial Units for Statistics (NUTS) levels 1, 2, 3 and 4. Regional
accounts are published until NUTS level 3.

9The East has benefited substantially from public investments in unified Germany and also adopted
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little value added in using night lights to predict local output once population density

is accounted for. This broadly reflects the conventional wisdom about the utility of

nighttime lights in highly development economies. The picture changes completely in

columns (4) to (6) where we use the corrected data. The sub-national light-output

elasticity rises substantially and remains highly significant even in the presence of stricter

fixed effects and a dummy for urban areas. The corrected data are strongly correlated

with local output, on top of differences in population density, and the size of the light-

output elasticity reaches levels comparable to national level estimates.

Table I-3 shows that this result carries over to changes over time, albeit with some

qualifications. We now use the full panel from 2000 to 2013. The first two columns for

each data source include state or government region fixed effects and year dummies, while

the last column only uses within district variation. The stable lights data suggest that the

light-output elasticity is relatively small. The corrected data recover results comparable

to the cross-sectional estimates in columns (4) and (5). However, once we include district

fixed effects, both the estimates become similar and their size decreases substantially. The

within-district variation is relatively small to begin with, making it difficult to empirically

trace out the light-output relationship (the R2s decline in tandem). More importantly,

the urban structure of Germany is very mature, so that our correction primarily affects

the cross-sectional ordering of districts, rather than their ranking over time. In any case,

the correction either substantially improves estimates of the light-output relationship at

the local level or, at the minimum, provides comparable answers.

Figure I-1 plots the average light intensity per square kilometer indicated by both data

sources over population density in order to illustrate the differences in the implied ranking

of districts. The two series begin to diverge strongly after a density of about one thousand

people per square kilometer. The stable lights series displays an asymptotic movement

towards the top-coding threshold of slightly above 100 DN whereas the corrected series

is approximately linear in population density.10 Another notable feature is that the two

out of the three brightest cities according to the stable lights data are medium-sized cities

with populations well below 200,000 people (Herne and Gelsenkirchen), whereas our data

correctly identifies the three largest and most populated economic centers as the brightest

(Frankfurt, Munich and Berlin).

In sum, top-coding is a major issue for estimating urban-rural differences, precisely

because there the cross-sectional comparison matters most. Using Germany as an

example, we can establish two findings which are likely to hold in other settings as

well. First, top-coding rises with urbanization. Second, the economic ranking of cities

distorted in the stable lights data but a sensible ranking emerges after the correction.

energy-saving lights differently than the West.
10Note that lights per square kilometer are not bounded by 63 DN because of the division by area.

Most pixels in Germany are smaller than 1 km2 but bigger than 500 m2, hence the theoretical upper
bound is slightly above 100 DN, eg. 63 DN/0.5 km2 = 126 DN/km2.
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Table I-1 – Light-output elasticity, country-level, 1996–2010

Dependent variable: GDP in 2005 PPPs

(1) (2) (3) (4) (5) (6)
Stable Corrected Radiance Stable Corrected Radiance

Lights per km2 0.275∗∗∗ 0.278∗∗∗ 0.233∗∗∗ 0.254∗∗∗ 0.257∗∗∗ 0.214∗∗∗

(0.067) (0.064) (0.054) (0.064) (0.062) (0.051)

Population per km2 0.382∗∗∗ 0.364∗∗∗ 0.397∗∗∗

(0.118) (0.116) (0.122)

Country FE X X X X X X

Year FE X X X X X X

Within-R2 0.721 0.725 0.712 0.732 0.735 0.725
Observations 1288 1288 1288 1288 1288 1288
Countries 186 186 186 186 186 186

Note(s): The table reports panel FE estimates. Lights per km2 and population per km2 are measured
in logs. The specifications are variants of ln yit = β lnLightsit + x′

itγ + ci + st + ǫit where xit is a
vector of controls, ci is a country fixed effect, and st are year dummies. Country-clustered standard
errors are provided in parentheses. Significant at: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table I-2 – Light-output elasticity, Germany at district level, cross-section

Dependent variable: GDP in LCU

Stable lights data Corrected data
(1) (2) (3) (4) (5) (6)

Lights per km2 0.119 0.145 0.173 0.271∗∗ 0.314∗∗ 0.336∗∗∗

(0.099) (0.115) (0.115) (0.111) (0.124) (0.125)

Population per km2 1.154∗∗∗ 1.151∗∗∗ 1.151∗∗∗ 1.044∗∗∗ 1.029∗∗∗ 1.033∗∗∗

(0.062) (0.070) (0.070) (0.073) (0.081) (0.082)

Urban -0.079∗∗ -0.083∗∗

(0.036) (0.036)

State FE X – – X – –
Gov’t region FE – X X – X X

Adjusted-R2 0.969 0.969 0.970 0.970 0.970 0.970
Districts 401 401 401 401 401 401

Notes: The table reports cross-sectional OLS estimates. All columns include a constant (not shown).
Lights per km2 and population per km2 are measured in logs. Urban is a binary variable based on the
official district classification. The specifications are variants of ln yi = β lnLightsi+x′

iγ+FEi+ ǫi,
where xi is a vector of controls and ci is a state or government region fixed effect. The data have been
averaged over the period from 2000 to 2013. Robust standard errors are provided in parentheses.
Significant at: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table I-3 – Light-output elasticity, Germany at district level, 2000–2013

Dependent variable: GDP in LCU

Stable lights data Corrected data
(1) (2) (3) (4) (5) (6)

Lights per km2 0.116∗ 0.148∗∗ 0.063∗∗∗ 0.212∗∗∗ 0.248∗∗∗ 0.042∗∗∗

(0.064) (0.067) (0.009) (0.074) (0.077) (0.008)

Population per km2 1.155∗∗∗ 1.165∗∗∗ 0.427∗∗∗ 1.082∗∗∗ 1.089∗∗∗ 0.412∗∗∗

(0.041) (0.044) (0.078) (0.049) (0.052) (0.078)

Urban -0.076∗∗ -0.077∗∗

(0.035) (0.034)

Time FE X X X X X X

State FE X – – X – –
Gov’t region FE – X – – X –
District FE – – X – – X

Within-R2 0.961 0.960 0.060 0.962 0.961 0.052
Observations 5614 5614 5614 5614 5614 5614
Districts 401 401 401 401 401 401

Notes: The table reports panel fixed effects estimates. Lights per km2 and population per km2

are measured in logs. Urban is a binary variable based on the official district classification. The
specifications are variants of ln yit = β lnLightsit+x′

itγ+ci+st+ǫit where xit is a vector of controls,
ci is a state, government region, or district fixed effect, and st are time dummies. District-clustered
standard errors are in parentheses. Significant at: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Figure I-1 – Light intensity versus population density in German districts
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J Additional results for African cities

Here we present additional results for the application on cities in Sub-Saharan Africa.

Figure J-1 shows the urban extents of selected cities and compares them with Google

Earth images at the end of the periods we use to delineate urban areas, i.e., 12/1994

and 12/2013. The urban footprint detected by our algorithm coincides well with built-

up structures. Abrahams et al. (2018) report similar results based on a more systematic

comparison of urban areas derived in this manner to those obtained with remotely-sensed

built-up grids.

Table J-1 gives an overview of the countries included in our study. The table reports

the names of the primary city, the number of secondary cities, and the annualized growth

rates for the stable lights and corrected data. The corrections are larger in primate than

in secondary cities for each individual country.

Table J-2 varies the minimum city size to account for the uncertainty in classifying

secondary cities. It only reports the strictest specification with country-year fixed effects

and contrasts the results in both data sets. The results are very robust to larger thresholds

and decrease only moderately in size and significance when smaller cities are included.

Including smaller settlements increases noise, as their light intensity is based on fewer

and fewer data points per year—no matter if they should be classified as secondary cities

or not.

Table J-3 shows that our results are robust to excluding each of the African regions

in turn. Regardless of whether we exclude Northern, Middle, Western or Southern

Africa, the difference the interactions of the linear trend and the primacy dummy is

only significant when the corrected data is used. When we exclude East Africa, the

coefficient marginally loses significance but remains within a standard error of the main

result. This suggests that cities in East and Southern Africa are particularly top-coded.

Table J-4 examines sprawl, that is, growth in lights outside of the initial footprint of

the city but within the envelope of both the initial and final period boundaries. Primary

cities are sprawling more rapidly than secondary cities. As expected, the top-coding

correction does not have a noticeable impact at the urban fringe. Urban sprawl is typically

suburban and density only increases later when these areas become part of the city proper.

Together with our main finding, this underlines that primate cities are consolidating their

dominant position in Sub-Saharan Africa.

Table J-5 provides some preliminary evidence on whether urban form has an effect

on city growth. To study this question, we regress log mean lights on the coefficient

of variation or Moran’s I in the previous year, a linear time trend, an interaction with

primacy, and a combination of city and satellite-year fixed effects. Spatial inequality

appears to have a robust negative effect on growth, but the impact of fragmentation is

small and not robust. City structure and growth are endogenous, so that we consider
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this an interesting partial correlation which could be explored in future research.

Table J-6 shows city-level growth regressions using the radiance-calibrated data side-

by-side with our main results to facilitate the comparison. Primary cities are growing

significantly faster than secondary cities according to both data sets. Moreover, the

interaction of primacy with the time trend in column (6) yields estimates which are

numerically close to our main results. The regressions also show that the radiance-

calibrated data imply a negative time trend in the light density of secondary cities (which

is likely to be measurement error, made worse by the absence of coincident satellites and

only a handful of years).

Figure J-2 illustrates the annual variation in all three data sets. The radiance-

calibrated data exhibit sizable fluctuations across the limited time span for which they are

available. These differences are not due to differences in top-coding, but the presence of

background noise, a complicated process of merging the frequency spectrum from multiple

satellites and, most importantly, a lack of comparability when this process was employed

in different years. This is precisely why we only use them to infer the top-coding threshold

and obtain the rank of top-coded pixels. The time series of the stable lights and corrected

data fluctuate considerably less and exhibit a positive trend over the entire period.

Finally, Table J-7 repeats the fragmentation regressions from the main text but

computes the coefficient of variation and Moran’s I using the radiance-calibrated data.

The results confirm that light intensity within primate cities has become considerably

less concentrated while there is no such trend in fragmentation.
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Figure J-1 – Urban extents of selected cities

(a) Lagos, 12/1994 (b) Lagos, 12/2013

(c) Luanda, 12/1994 (d) Luanda, 12/2013

(e) Johannesburg, 12/1994 (f) Johannesburg, 12/2013

Notes: Illustration of the urban extents detection algorithm presented in the text. Note the
differences in map scale. Comparison of 1992-1994 urban footprint with December 1994 and
December 2013 Landsat/ Copernicus images obtained via Google Earth Pro. Google Earth images
are used as part of their “fair use” policy. All rights to the underlying maps belong to Google.
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Table J-1 – Annualized growth rates of cities in Africa, 1992–2013, intensive margin

Country Primate Primate city growth: Secondary Secondary city growth:
city Stable lights Corrected cities Stable lights Corrected

Angola Luanda 0.0282 0.0834 5 0.2034 0.2115
Burundi Bujumbura 0.0114 0.0123 0
Benin Cotonou 0.0291 0.0317 3 0.1827 0.1823
Burkina Faso Ouagadougou 0.0265 0.0325 4 0.1842 0.1846
Botswana Gaborone 0.0328 0.0406 10 0.1775 0.1776
Central
African
Republic

Bangui -0.0076 -0.0076 0

Côte d’Ivoire Abidjan 0.0128 0.0229 18 0.1817 0.1819
Cameroon Douala 0.0193 0.0250 8 0.1642 0.1671
Congo
(Dem.Rep.)

Brazzaville 0.0074 0.0181 13 0.1640 0.1651

Congo Kinshasa 0.0124 0.0217 2 0.1897 0.1923
Djibouti Djibouti 0.0205 0.0247 0
Eritrea Asmara 0.0217 0.0221 1 0.0627 0.0627
Ethiopia Addis Abbeba 0.0227 0.0248 4 0.1771 0.1771
Gabon Libreville 0.0138 0.0182 4 0.1700 0.1718
Ghana Accra 0.0217 0.0284 18 0.1688 0.1694
Guinea Conakry 0.0268 0.0273 2 0.1212 0.1212
Gambia, The Banjul 0.0300 0.0314 0
Guinea-Bissau Bissau 0.0154 0.0154 0
Kenya Nairobi 0.0194 0.0213 12 0.1517 0.1525
Lesotho Maseru 0.0390 0.0409 1 0.0517 0.0517
Madagascar Antananarivo 0.0288 0.0309 5 0.1569 0.1569
Mali Bamako 0.0233 0.0303 1 0.1787 0.1787
Mozambique Maputo 0.0341 0.0475 11 0.1870 0.1876
Mauritania Nouakchott 0.0294 0.0365 2 0.1928 0.1925
Malawi Blantyre 0.0167 0.0206 5 0.1526 0.1537
Namibia Windhoek 0.0130 0.0198 14 0.1735 0.1744
Niger Niamey 0.0188 0.0181 5 0.1767 0.1767
Nigeria Lagos 0.0175 0.0244 65 0.1643 0.1655
Rwanda Kigali 0.0212 0.0218 1 0.1366 0.1366
Sudan Khartum 0.0210 0.0317 20 0.1873 0.1879
Senegal Dakar 0.0213 0.0329 11 0.1765 0.1776
Sierra Leone Freetown 0.0270 0.0270 0
Somalia Mogadishu 0.0635 0.0635 0
Swaziland Mbabane 0.0288 0.0303 6 0.1340 0.1340
Tchad Ndjamena 0.0300 0.0324 3 0.1560 0.1560
Togo Sokode 0.0200 0.0228 2 0.1429 0.1429
Tanzania Dar es Salaam 0.0231 0.0245 18 0.1594 0.1595
Uganda Kampala 0.0318 0.0367 4 0.1528 0.1528
South Africa Johannesburg 0.0100 0.0186 211 0.1697 0.1711
Zambia Lusaka 0.0185 0.0293 19 0.1769 0.1776
Zimbabwe Harare 0.0011 0.0014 19 0.1403 0.1403

Notes: The table reports summary statistics for the primary city and secondary cities in each country.
The annualized growth rates are based on average light intensity and computed as 1

21
(lnx2013 −

lnx1992). The growth rate of secondary cities is an average across all such cities in the country.
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Table J-4 – Growth regressions for African cities, outside of initial boundaries

Dependent variable: Log lights in the fringe

Stable lights data Corrected data
(1) (2) (3) (4) (5) (6)

Linear trend 2.575 2.576
(0.161)∗∗∗ (0.161)∗∗∗

[0.682]∗∗∗ [0.683]∗∗∗

Primate × Linear trend 2.959 2.955 2.830 2.996 2.992 2.883
(0.433)∗∗∗ (0.433)∗∗∗ (0.304)∗∗∗ (0.442)∗∗∗ (0.442)∗∗∗ (0.309)∗∗∗

[0.442]∗∗∗ [0.433]∗∗∗ [0.303]∗∗∗ [0.451]∗∗∗ [0.442]∗∗∗ [0.306]∗∗∗

City FE X X X X X X

Satellite FE X – – X – –
Year FE – X – – X –
Country-Year FE – – X – – X

Observations 11410 11410 11410 11410 11410 11410
Cities 519 519 519 519 519 519

Notes: The table reports the results of city-level panel regressions using the stable lights and top-
coding corrected data outside of the initial boundaries. The fringe is defined as the difference
between the envelope of a city, i.e., the maximum urban extend, and the initial boundary. This
leads to slightly fewer cities as some are not observed in the final period. Areas with zero or few
lights are adjusted following the procedure in Storeygard (2016) where the minimal detectable light
intensity (in DN) for a given area is added to the total before dividing by the area of the fringe.
All coefficients are scaled by 100 for readability. The specifications are variants of lnLightsijt =
β1t+β2(t×Pij)+ cij + sjt+ ǫijt where t is a linear time trend, Pij is an indicator for primate cities,
cij is a city fixed effect and sjt contains a varying set of fixed effects (satellite, year, or country-year).
Standard errors clustered at the city level are reported in parentheses. Conley errors with a spatial
cutoff of 1,000 km and a time-series HAC with a lag cutoff of 1,000 years are reported in brackets.
Significant at: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table J-5 – Impact of fragmentation on city growth, envelopes

Dependent variable: Log lights in the envelope

(1) (2) (3) (4) (5) (6)

Linear trend 0.228 0.810
(0.144) (0.129)∗∗∗

[0.558] [0.555]

Primate × Linear trend 0.739 0.724 0.602 1.269 1.274 0.921
(0.293)∗∗ (0.292)∗∗ (0.216)∗∗∗ (0.351)∗∗∗ (0.351)∗∗∗ (0.239)∗∗∗

[0.303]∗∗ [0.301]∗∗ [0.220]∗∗∗ [0.351]∗∗∗ [0.350]∗∗∗ [0.239]∗∗∗

Lagged CV -0.549 -0.564 -0.403
(0.088)∗∗∗ (0.090)∗∗∗ (0.071)∗∗∗

[0.100]∗∗∗ [0.102]∗∗∗ [0.077]∗∗∗

Lagged Moran -0.396 -0.269 -0.217
(0.167)∗∗ (0.174) (0.153)
[0.172]∗∗ [0.177] [0.150]

City FE X X X X X X

Satellite FE X – – X – –
Year FE – X – – X –
Country-Year FE – – X – – X

Observations 11791 11791 11791 11791 11791 11791
Cities 562 562 562 562 562 562

Notes: The table reports the results of city-level panel regressions using the top-coding corrected
data, where either the lagged coefficient of variation or Moran’s I are used as regressors (Fij,t−1).
All coefficients are scaled by 100 for readability. The specifications are variants of lnLightsijt =
β1t+ β2(t× Pij) + β3Fij,t−1 + cij + sjt + ǫijt where t is a linear time trend, Pij is an indicator for
primate cities, cij is a city fixed effect and sjt contains a varying set of fixed effects (satellite, year,
or country-year). Standard errors clustered at the city level are reported in parentheses. Conley
errors with a spatial cutoff of 1,000 km and a time-series HAC with a lag cutoff of 1,000 years are
reported in brackets. Significant at: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table J-6 – Growth regressions for African cities, radiance-calibrated data

Dependent variable: Log lights in the initial footprint

Corrected data Radiance-calibrated data
(1) (2) (3) (4) (5) (6)

Linear trend 0.834 -0.515
(0.126)∗∗∗ (0.226)∗∗

[0.554] [0.934]

Primate × linear trend 0.742 0.742 0.826 1.062 1.062 0.828
(0.255)∗∗∗ (0.255)∗∗∗ (0.314)∗∗ (0.399)∗∗∗ (0.399)∗∗∗ (0.339)∗∗

[0.260]∗∗∗ [0.258]∗∗∗ [0.314]∗ [0.409]∗∗∗ [0.407]∗∗∗ [0.386]∗∗

City FE X X X X X X

Satellite FE X – – X – –
Year FE – X – – X –
Country-Year FE – – X – – X

Observations 12465 12465 12465 3966 3966 3966
Cities 567 567 567 567 567 567

Notes: The table reports the results of city-level panel regressions using the top-coding corrected data
and radiance-calibrated data. All coefficients are scaled by 100 for readability. The specifications
are variants of lnLightsijt = β1t+ β2(t× Pij) + cij + sjt + ǫijt where t is a linear time trend, Pij

is an indicator for primate cities, cij is a city fixed effect and sjt contains a varying set of fixed
effects (satellite, year, or country-year). Standard errors clustered at the city level are reported in
parentheses. Conley errors with a spatial cutoff of 1,000 km and a time-series HAC with a lag cutoff
of 1,000 years are reported in brackets. Significant at: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Figure J-2 – Trends in light emitted by African cities according to different data sets

(a) Primary cities
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Notes: Illustration of the average sum of lights over time in the sample of African cities.
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Table J-7 – Trends in fragmentation of African cities, envelopes, radiance-calibrated data

Dependent variable:

Coefficient of Variation Moran’s I
(1) (2) (3) (4) (5) (6)

Linear trend 0.500 0.075
(0.114)∗∗∗ (0.052)
[0.211]∗∗ [0.073]

Primate × linear trend -0.960 -0.935 -0.992 -0.095 -0.092 -0.018
(0.220)∗∗∗ (0.217)∗∗∗ (0.257)∗∗∗ (0.052)∗ (0.052)∗ (0.059)
[0.219]∗∗∗ [0.215]∗∗∗ [0.255]∗∗∗ [0.061] [0.061] [0.063]

Log light intensity -3.951 -5.630 -1.699 -0.681 -0.902 -1.169
(4.131) (4.267) (3.388) (0.545) (0.574) (0.715)
[4.250] [4.346] [3.781] [0.560] [0.587] [0.695]∗

City FE X X X X X X

Satellite FE X – – X – –
Year FE – X – – X –
Country-Year FE – – X – – X

Observations 3932 3932 3932 3932 3932 3932
Cities 562 562 562 562 562 562

Notes: The table reports results of city-level panel regressions using the radiance-calibrated data
for the available years. The specifications are variants of Fijt = β1t+β2(t×Pij)+β3 lnLightsijt+
cij + sjt + ǫijt, where Fijt is either the coefficient of variation or Moran’s I, t is a linear time trend,
Pij is an indicator for primate cities, cij is a city fixed effect and sjt contains are varying set of fixed
effects (satellite, year, or country-year). Standard errors clustered at the city level are reported in
parentheses. Conley errors with a spatial cutoff of 1,000 km and a time-series HAC with a lag cutoff
of 1,000 years are reported in brackets. Significant at: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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