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Abstract

Many applied settings in empirical economics require estimation of a large number of indi-
vidual effects, like teacher effects or location effects; in health economics, prominent examples
include patient effects, doctor effects, or hospital effects. Increasingly, these effects are the ob-
ject of interest of the estimation, and predicted effects are often used for further descriptive
and regression analyses. To avoid imposing distributional assumptions on these effects, they
are typically estimated via fixed effects methods. In short panels, the conventional maximum
likelihood estimator for fixed effects binary response models provides poor estimates of these
individual effects since the finite sample bias is typically substantial. We present a bias-reduced
fixed effects estimator that provides better estimates of the individual effects in these models
by removing the first-order asymptotic bias. An additional, practical advantage of the esti-
mator is that it provides finite predictions for all individual effects in the sample, including
those for which the corresponding dependent variable has identical outcomes in all time periods
over time (either all zeros or ones); for these, the maximum likelihood prediction is infinite. We
illustrate the approach in simulation experiments and in an application to health care utilization.
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1 Introduction

This paper addresses estimation and prediction of individual-specific effects in the fixed effects

(FE) panel probit model when the individual dimension N is large and the time dimension T is

relatively small. The view of individual—or, more generally, panel-unit—effects not as nuisance

parameters but rather as features of interest has received increased attention in applied work lately,

for example in the context of neighborhood effects (Chetty and Hendren, 2018), teacher effects

(Chetty, Friedman and Rockoff, 2014), and judge effects (Abrams, Bertrand and Mullainathan,

2012), to name but a few. All these studies employ the linear fixed effects model to obtain individual

effects, although the dependent variable is frequently binary.

In such cases, it clearly would be preferable to extract the individual effects from a proper (non-

linear) binary response model, such as the logit or probit model. However, conventional estimation

methods such as maximum likelihood (ML) face two major obstacles. First, to obtain a consistent

and asymptotically normal estimator of all the parameters of the model requires an asymptotic

theory where T increases without bound. In finite samples, the ML estimator suffers a non-

negligible finite sample bias unless T is large. This problem is especially severe for the individual

effects, whose estimation depends mainly on the T observations of each panel unit.

Second, methods like ML or non-linear least squares often fail to yield finite predictions for the

individual effects. In short panels there are typically many individual units with identical outcomes

in all time periods (either all zeros or ones). ML estimation will set the fitted probabilities to either

zero or one, which requires the absolute value of the individual effect to go to infinity. The literature

often describes this situation as “perfect prediction” (see Maddala, 1983). In order to emphasize

the distinction between prediction of fitted probabilities and those of individual effects, the main

objective in this paper, we refer to such “perfectly-predicted” panel units instead as concordant.

The degree of concordance in typical applications can be very high. For instance, Autor, Duggan

and Gruber (2014) explain that they avoid using a non-linear binary response model in their panel

analysis of U.S. long-term disability policies specifically because 25 per cent of their sample is con-

cordant and would be omitted in estimation. In our application to doctor visits with representative

German survey data, between 29 to 45 per cent of the respective samples are concordant. Thus, for

a sizeable share of individuals it would be impossible to obtain predictions of the individual effects

using conventional FE binary response models, and units would necessarily be dropped from fur-

ther descriptive and regression analyses involving the predicted individual effects. Such approaches
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discard informative variation stemming from what is often a rich set of covariates.

In this paper, we present and study an estimation approach that removes the first-order bias and

obtains finite estimates for all individual effects, including the ones corresponding to concordant

units. The concordance problem has, to the best of our knowledge, not been addressed directly

by the previous literature on panel data models for binary responses, but it is closely related to

well-known problems in the literature. Under asymptotic theories where T is considered fixed,

the issue of finite sample bias becomes an identification problem. For instance, Honoré and Taber

(2006) and Browning and Carro (2014) studied the lack of point identification for dynamic discrete

choice models and binary choice models with heterogeneous slopes, respectively. The concordant

units, where the ML estimate of the individual effects is infinite, show the identification problem

in its highest degree.

The identification problem is not unique to the ML estimator. For instance, for a sample consisting

only of concordant units, the linear probability model would predict all individual effects as either

zero or one, and estimate the structural parameters (the vector β, representing the slopes of all

covariates) as zero. Moreover, the linear probability model also does not provide a consistent

estimate of the average marginal effect, which is an average over the distribution of individual

effects (Chernozhukov et al., 2013). A way of partially circumventing this problem in non-linear

models is via conditional maximum likelihood, which provides a consistent estimator of β. Such an

estimator exists only for the FE logit model (or slightly modified FE logit models, see Bartolucci

and Nigro, 2010) but not the FE probit model. In any case, the conditional approach is of no help

here as it does not provide estimates of the individual effects.

Therefore, to obtain predictions of the individual effects we build on the literature that abandons

the fixed-T assumption in favor of the alternative, where both N and T increase (Hahn and Newey,

2004, Arellano and Hahn, 2006). In this literature, consistent estimators are obtained by having

N not grow too quickly relative to T and applying analytical or jackknife bias corrections of the

first-order bias in the structural parameters such as β (e.g. Bester and Hansen, 2009, Fernández-

Val, 2009, Bartolucci et al., 2016, Carro, 2007) or functionals of the individual effects such as

average marginal effects (e.g. Fernández-Val, 2009, Dhaene and Jochmans, 2015). We contribute

to this literature by focussing directly on the estimates of the individual effects. While a number

of estimators remove the first-order bias in panel probit models and could potentially be used

to improve over ML in terms of predicting individual effects, many fall short of the important

practical issue of providing finite estimates for concordant units. For instance, all approaches that
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bias-correct the ML estimate fall into this categories, as the corrections cannot be applied to an

infinite estimate.

We obtain the first-order bias of the maximum likelihood estimator for the individual effects, an-

alytically under simplifying assumptions, as well as in simulation experiments, in the context of

the FE panel probit model for binary outcomes. In order to remove the first-order, O(1/T ) bias,

we follow Kosmidis and Firth (2009), who derive a general modified score function for models in

the linear exponential family. Their approach can be tailored to the FE panel probit model. The

resulting estimator is referred to as “bias-reduced FE (BRFE) probit”. Importantly, we show that

this estimator has finite support for all model parameters, including the individual effects of concor-

dant observation units, by shrinking the individual effects towards zero. Shrinkage also reduces the

variance of the predictions and unambiguously improves the mean squared error. Relatedly, all ob-

servations contribute to estimation of the structural parameters. In addition, the estimator can be

easily implemented by using iteratively reweighted least squares, and it allows for straightforward

inference using standard methods.

The identification problem and bias in finite samples can be considered two sides of the same

coin. In this sense, there are limitations on what is achievable with the approach we present.

A first limitation is of a theoretical nature. The ML estimator provides poor estimates of the

individual effects in short panels. The BRFE improves over these estimates because it reduces

the order of the asymptotic bias of the ML estimator and because it improves the finite sample

performance. However, BRFE’s ability to estimate individual effects is also negatively affected

by the likelihood of concordance, although less extremely than ML estimation. As we show, the

estimation of individual effects which are very large in absolute value (i.e., very likely to result in

a concordant unit) is associated with a larger mean square error. A second limitation is of a more

practical nature. The ML prediction for individual effects of concordant units, ±∞, is arbitrary

and unreasonable for many practical purposes. The prediction given by BRFE in a model with

no covariates is finite, but also arbitrary. The key advantage of BRFE over ML here lies in the

BRFE prediction varying in sensible and intuitive ways with covariates and with the number of

periods. For instance, BRFE will assign a lower probability (smaller individual effect) to a unit

where the dependent variable is zero in eight periods versus four periods. Similarly, it will adjust

the prediction of the individual effect according to the individual’s covariates and corresponding β

coefficients. The ML estimator, in contrast, remains unhelpfully infinite across these informative

differences in the data.
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In the next section, we formally introduce the problems of first-order bias and concordance in the

context of binary response FE panel data models. We focus in our discussion on the FE probit

model where not even a conditional maximum likelihood solution exists. We then present the

BRFE estimator, and show how it addresses these problems. In the Appendix, we show how the

approach generalizes to other types of binary response models, including the FE logit model. In

Section 3, we set up simulation experiments for predicting the individual effects across a number

of differently shaped distributions from which the true individual effects are drawn. The BRFE

estimator performs remarkably well in these simulations in terms of bias as well as mean squared

error. The simulations also indicate that the BRFE estimator delivers reliable estimates of β in

short panels. Overall, there is a clear recommendation for the use of the BRFE estimator in

applications, in particular when there is a high degree of concordance.

In Section 4, we present an illustrative application related to health care utilisation. Using panel

data from the German Socio-Economic Panel for the period 2000–2014, we obtain predictions of

the individual-specific effects in a model where the binary variable “any doctor visit during the last

three months (yes/no)” is regressed on a number of indicators of socio-economic status and health

status. Estimating individual effects for separate subperiods, e.g. 2000-2004 and 2010-2014, makes

it possible to study their stability over time. We show that the percentile rank of the estimated

individual effects for the first-period doctor visits are also predictive for a different outcome, the

incidence of hospital admission ten years later. Thus, the individuals’ unobserved component is not

only very persistent over time but also across different domains of health care utilisation. Section

5 concludes.

2 Econometric methods

2.1 Maximum likelihood estimation of the fixed effects probit model

Consider a panel probit model with individual-specific intercepts, αi,

Pr(yit = 1|αi, xit) = Φ(αi + x′itβ), i = 1, . . . , N, t = 1, . . . , T, (1)

where yit ∈ {0, 1}, Φ(·) is the cumulative distribution function of the standard normal distribution,

xit is a vector of covariates and β a conformable vector of coefficients. The key parameters αi are also

referred to as individual or panel-unit effects. N is assumed to be large and T is small. Observations
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are independent between individuals and, conditional on individual effects αi and covariates xit,

serially uncorrelated. Regressors are strictly exogenous: Pr(yit = 1|xi1, . . . , xiT , αi) = Pr(yit =

1|xit, αi). This model is prominent among practitioners, since is does not make any assumption

on the distribution of the individual effects other than that they are finite, nor does it require the

αi’s to be exogenous (uncorrelated with xit). Estimators that do not place any restrictions on the

distribution of individual effects are called FE estimators.

It is well-known that the maximum likelihood (ML) FE estimator, (α̂, β̂) = (α̂1, . . . , α̂N , β̂) has a

number of deficiencies in this case. First, β̂ is inconsistent. This is a consequence of the incidental

parameters problem. Abrevaya (1997) shows for the panel logit model with T = 2, that plimβ̂ = 2β.

Greene (2004) provides Monte Carlo simulation results for the probit model showing that the

upward bias persists for T = 8 and even T = 20. Second, α̂i is inconsistent for fixed T and

N →∞, and biased for small T . Third, α̂i does not exist due to concordance, if ȳi = 0 or if ȳi = 1,

where ȳi = T−1
∑T

t=1 yit.

We are here mostly concerned with the second and third issues, the small sample bias and the

potential non-existence of α̂i. Our approach is based on an estimator developed by Kosmidis

and Firth (2009) (see also Firth, 1993) for cross-section data and adapts it to the estimation of

individual effects in a FE probit panel data model. We show that the resulting estimator does not

suffer from the concordance problem. It also is relatively easy to compute, as it can be obtained

using an iteratively reweighted least squares estimator as shown by Kosmidis and Firth (2009).

2.2 First-order bias

Non-linear maximum likelihood estimators have a finite sample bias. A formal derivation of the

first-order bias of ML estimators is given in Cox and Snell (1971). For an illustration, consider a

simple panel probit model with time-invariant regressors:

Pr(yit = 1|α̃i, x̄i) = Φ(α̃i + x̄′iγ) = Φ(αi) (2)

where αi = α̃i + x̄′iγ. In this case, ȳi is the unbiased ML estimator for µi = Φ(αi) and α̂ML
i =

Φ−1(ȳi). Expanding α̂ML
i around αi gives

α̂ML
i − αi ≈

∂αi(µi)

∂µi
(ȳi − µi) +

1

2

∂2αi(µi)

(∂µi)2
(ȳi − µi)2
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where αi(µi) = Φ−1(µi), and

∂αi
∂µi

=
1

∂Φ(αi)/∂αi
=

1

φ(αi)
,

∂2αi
∂µ2

i

= − 1

φ(αi)2
× [−αiφ(αi)]×

∂αi
∂µi

=
αi

φ(αi)2
.

Since E[(ȳi − µi)2] = µi(1− µi)/T = Φ(αi)(1− Φ(αi))/T , it follows that

E(α̂ML
i − αi|αi) =

1

2T

αiΦ(αi)(1− Φ(αi))

φ(αi)2
+O(T−2). (3)

The first-order bias is positive if αi > 0, and hence Φ(αi) > 0.5. It is negative for αi < 0. As |αi|

goes to infinity, so does the product of Mills ratios Φ(αi)(1 − Φ(αi))/φ
2(αi) and hence the bias,

both absolute and relative. Note that αi →∞ means that Pr(yit = 1|αi)→ 1, while for αi → −∞,

Pr(yit = 1|αi)→ 0. Thus, the first-order bias increases with the likelihood of concordance.

2.3 Concordance

Concordance in the general model (1) means that the first-order conditions for the ML estimator

do not have a finite solution due to the lack of variation in the binary outcome in the panel probit

model. The K +N first-order conditions of the panel probit model are:

sML(αi) =
∂ logL

∂αi
=

T∑
t=1

(yit − Φ(ηit))
φ(ηit)

Φ(ηit)(1− Φ(ηit))
= 0, i = 1, . . . , N, (4)

sML(βk) =
∂ logL

∂βk
=

N∑
i=1

T∑
t=1

(yit − Φ(ηit))
φ(ηit)

Φ(ηit)(1− Φ(ηit))
xk,it = 0, k = 1, . . . ,K, (5)

where ηit = αi + x′itβ, and K is the number of regressors in xit. Suppose that ȳi = 0 for some i.

Then (4) simplifies to
T∑
t=1

φ(ηit)

1− Φ(ηit)
= 0, (6)

which does not have a solution since the inverse Mills ratio λit = φ(ηit)/(1− Φ(ηit)) > 0 for finite

ηit. Similarly, if ȳi = 1 for some i, (4) simplifies to

T∑
t=1

φ(ηit)

Φ(ηit)
= 0, (7)

which does not have a solution either. In the first case, α̂i will tend to minus infinity, while it will
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tend to plus infinity in the second.

Note that the estimator for β still exists. As long as there are some panel units with variation in yit

(i.e., some discordant units), β can be estimated using those observations, based on (5). Concordant

observations do not contribute to the (concentrated) score, since

lim
α̂ML
i (β)→−∞

(
−
∑
t

φ(α̂ML
i (β) + x′itβ)

1− Φ(α̂ML
i (β) + x′itβ)

xit

)
= 0 if ȳi = 0,

lim
α̂ML
i (β)→+∞

(
−
∑
t

φ(α̂ML
i (β) + x′itβ)

Φ(α̂ML
i (β) + x′itβ)

xit

)
= 0 if ȳi = 1.

The problem of concordance is most severe for short panels: as T increases, it becomes less and less

likely to obtain panel units with ȳi = 0 or ȳi = 1, provided that 0 < Pr(yit = 1) < 1. For example,

in the simple time-invariant model (2),

Pr(ȳi = 0|αi) + Pr(ȳi = 1|αi) = Pr

(
T∑
t=1

yit = 0
∣∣αi)+ Pr

(
T∑
t=1

yit = T
∣∣αi) (8)

= (1− Φ(αi))
T + Φ(αi)

T ,

Hence, the probability of concordance decreases in T . For a given T , it has a minimum at αi = 0.

A larger absolute value of αi leads to both a larger first-order bias and a higher incidence of

concordance. Discarding concordant units from an analysis of the distribution of the individual

effects, αi, might lead to flawed conclusions.

2.4 A bias-reduced fixed effects (BRFE) probit estimator

Firth (1993) showed that for linear exponential family models with canonical link function, the

first-order bias of the maximum likelihood estimator can be removed by maximising a modified

log-likelihood function that includes a term based on the log-determinant of the information matrix

(see also Ehm, 1991). The probit model is a linear exponential family model with non-canonical

link where such a modified likelihood function does not exist. However, Kosmidis and Firth (2009)

derived a related adjustment to the score function that achieves the same first-order bias reduction

for general cross-sectional models. Such a re-centering the estimating equations to eliminate bias at

the assumed model is also one of the features of the approach to robustness based on the influence

function (Hampel et al., 1986).
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Applying and extending this approach to the FE panel probit models achieves three things: first,

it resolves the incidental parameters problem, in the sense that the estimator of the structural

parameter is asymptotically normal and centered at the truth, contingent on asymptotics where

T grows faster than N1/3 (Hahn and Newey, 2004). Sartori (2002) establishes the same sufficient

condition for the absence of the incidental parameters problem in the context of general profile

likelihood functions, that extend to the Firth correction in exponential families (see also Lunardon,

2018). Second, as the focus is here on estimation of αi, removing its first order bias has the

obvious direct benefit of providing better estimates of these parameters of interest. Third, and

equally important, it ensures that finite estimates of αi exist even for concordant observation units,

which makes it possible to study the whole distribution of individual effects rather than a selected

subsample.

For the FE probit panel model, the adjusted score function with respect to αi is given by

sBRFE(αi) =
T∑
t=1

[
yit − Φ(ηit)−

1

2
hitηit

Φ(ηit)(1− Φ(ηit))

φ(ηit)

]
φ(ηit)

Φ(ηit)(1− Φ(ηit))
(9)

= sML(αi)−
T∑
t=1

1

2
hitηit,

where hit are the it-th diagonal elements of the NT ×NT projection matrix

H = W 1/2X(X ′WX)−1X ′W 1/2, (10)

with X the NT ×(K+N) matrix of the K regressors and N individual-unit indicator vectors, and

W is the NT ×NT diagonal matrix with typical element wit = φ(ηit)
2/[Φ(ηit)(1− Φ(ηit))].

To provide an intuition for the way that the ML score is re-centered in (9), consider again the bias

of α̂ML
i in a simple constant-only model. In that model, the term that is subtracted from the ML

score in (9) is equal to (3), the bias of α̂ML
i , times the curvature of the ML score function. Since

the bias in α̂ML
i is a result of the combination of the ML score being both unbiased and non-linear,

by re-centering the score by “bias in parameter × curvature of score” BRFE produces an estimator

for αi which is precisely free of this (first-order) bias.

The βk-terms of the score vector are adjusted accordingly as

sBRFE(β) = sML(β)−
T∑
t=1

1

2
hitηitxit (11)
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From (9) and (11), it can be seen that if we define

y∗it = yit −
1

2
hitηit

Φ(ηit)(1− Φ(ηit))

φ(ηit)
, (12)

then (9) and (11) are in the form of the standard ML scores sML(αi) and sML(β), where yit is

replaced by the pseudo-response y∗it.

The BRFE probit estimator (β̂BRFE , α̂BRFE) = (β̂BRFE , α̂BRFE1 , . . . , α̂BRFEN ) is obtained by jointly

solving the N + K first-order conditions sBRFE(αi) = 0 (i = 1, . . . , N) and sBRFE(β) = 0. In

practice, this can be done using iteratively reweighted least squares common for generalized linear

models (as in Kosmidis and Firth, 2009), or Newton-Raphson type pseudo-ML estimators for the

probit model, where at iteration s, the vector {ŷ∗it} is computed from the values ĥit(β̂
s−1, α̂s−1)

and η̂it(β̂
s−1, α̂s−1) estimated at the previous iteration.

The resulting estimator follows an asymptotically normal distribution with an asymptotic variance

equal to the inverse of the Fisher information; when estimates are obtained via iteratively reweighted

least squares, estimated standard errors can be conveniently extracted from the square root of the

diagonal elements in (X ′ŴX)−1, where Ŵ is W evaluated at the estimates of the final iteration

(Kosmidis, 2007).

2.4.1 Obtaining finite individual effects for all units

To prove that the BRFE probit estimator of the individual effects is always finite, consider the case

where all observations of unit i are equal to one, ȳi = 1. Then, we can write the bias-reduced score

(9) as

sBRFE(αi) =

(∑
t

φ(ηit)

Φ(ηit)

)
− αi

2

(∑
t

hit

)
− 1

2

(∑
t

hitx
′
itβ

)
= g1(αi)− αig2(αi)− g3(αi). (13)

When αi becomes large, the first term in the score, g1(αi), approaches zero, because each inverse

Mills ratio in the sum approaches zero. Because hit is an element of the diagonal of a projection

matrix, we have that 0 < hit ≤ 1 for each hit, so that g2(αi) is bounded. Thus, as αi tends to

plus infinity, the second term, −αig2(αi), tends to minus infinity. The third term, g3(αi), tends

to some finite constant because it is a sum of T finite summands. Thus, the whole score tends

to minus infinity when αi tends to plus infinity. When αi tends to minus infinity, g1(αi) grows

without bound, and so does −αig2(αi), while g3(αi) tends to some other finite constant. Thus, the
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whole score tends to plus infinity. Since the score is continuous, a finite solution must exist. Similar

arguments can be made to show that a solution exists for the other concordance case, ȳi = 0, as

well.

Without time varying regressors, i.e. in the constants-only model,
∑

t hit = 1. From (9), we see

that if yi1 = . . . = yiT = 1, α̂i is obtained as solution to the non-linear equation

α̂BRFEi = 2T
φ(α̂BRFEi )

Φ(α̂BRFEi )
, (14)

whereas for yi1 = . . . = yiT = 0,

α̂BRFEi = −2T
φ(α̂BRFEi )

1− Φ(α̂BRFEi )
. (15)

The two cases differ only in sign. For T = 2, 4, 8, 12 the estimates for αi are about ±1.06, ±1.37,

±1.67, and ±1.84, respectively. The solutions for equations (14) and (15) may be approximated by

α̂BRFEi ≈ 0.8 + 0.413 log Ti and α̂BRFEi ≈ 0.007 + 0.293/T , respectively.

When ȳi = 0, the associated predicted probabilities ̂Pr(yit = 0) = 1−Φ(α̂i) are 0.144, 0.086, 0.048

and 0.033 . These values illustrate how the BRFE estimator bounds the predicted probabilities

away from the perfect-prediction probability of 0. By how much probabilities are bounded away

from zero is inversely related to the number of individual observations T . The ML solution, of

course, is a probability of exactly zero, which, while unbiased, might be an unreasonable prediction

for many applications: it means that an event that has not occurred in two, three or four periods is

deemed impossible. Note that in models with time-varying covariates xit, the ML solution remains

an exact zero irrespective of the value of the covariates. In contrast, the BRFE estimator adjusts

the predicted probabilities according to the value of xit allowing distinctions between different

underlying propensities.

The problem of non-existence of the ML estimator for the individual effect is not limited to the

probit model. All binary response models of the general form P (yit = 1|xit, αi) = G(x′itβ + αi),

where G(·) is a smooth strictly increasing function, suffer from it. As we show in the appendix, the

BRFE estimator of αi, in contrast, is guaranteed to obtain finite estimates of the individual effects

for all units for this general class of models (Appendix B.3), which includes all the commonly used

models in the literature, such as logit, complementary log-log, Weibull, etc. Of particular interest

is logit, which is the canonical parametrisation for generalized linear models with a binary response

variable. For this special case, the bias-reduced estimator has a penalized likelihood representation
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(Firth, 1993).

Also note that the problem of non-existing ML estimates can arise in cross-sections as well. An

example is a model for the probability of treatment with a binary instrument Z and no “always

takers”, i.e., when Z = 0 implies non-treatment. Heinze and Schemper (2002) have shown for the

logit model that Firth’s (1993) modified likelihood estimator provides finite estimates in such a

case.

2.4.2 Mean squared error

After having established the finiteness of the BRFE estimator for αi, we now briefly consider the

quality of the estimation. For the simple model without covariates, the mean square error (MSE)

of the estimated individual effects in the BRFE probit model can be written as

MSE(α̂BRFEi , αi) = Eȳi(α̂
BRFE
i − αi)2

=
T∑
k=0

Pr(ȳi = k/T )(α̂BRFEi (k/T )− αi)2

=

T∑
k=0

T !

k!(T − k)!
Φ(αi)

k(1− Φ(αi))
T−k(α̂BRFEi (k/T )− αi)2, (16)

The first and last terms of the sum represent concordant observations. Hence, the MSE of the

ML estimator α̂ML
i cannot be finite. With first-order bias reduction, the MSE of α̂BRFEi is always

finite.

−−−−−−−−− Figure 1 about here −−−−−−−−−

Figure 1 visualizes the relationship between the MSE of α̂BRFEi and the severity of concordance.

The graph plots the MSE of α̂BRFEi against the share (or probability) of concordant units for T=4

and T=12, respectively. For example, if αi = 0, it follows that Φ(0) = 0.5, and for T = 4 and

N →∞, 2× 0.54 = 12.5% of all observations can be expected to be concordant (see also equation

(8)). Other values for αi necessarily lead to a higher degree of concordance.

In these graphs, the MSE is decomposed into a part attributable to concordant observations (the

summands corresponding to k = 0 and k = T on the right-hand-side of Equation (16)) and a
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part attributable to discordant observations (the summands corresponding to 0 < k < T ). The

relative contribution of concordant observations to the total MSE first decreases and then increases,

as concordance becomes more prevalent. Eventually, the MSE is almost exclusively driven by

concordant observations and becomes large. But we know from results in section 2.4.1 that it

remains finite. No closed-form MSE results are available once covariates are introduced into the

model. We therefore conduct a number of simulation experiments where individual effects are

obtained from a number of different distributions

3 Simulation experiments

3.1 Set-up

The focus of this simulation study is the performance of the BRFE approach for estimating indi-

vidual effects in fixed effects panel probit models with a small to moderate number of time periods

and a varying prevalence of concordance. The simulation experiments contrast the behaviors of

the ML and BRFE estimators for different true underlying distributions of the individual effects,

in terms of bias and mean squared error.

−−−−−−−−− Figure 2 about here −−−−−−−−−

In our simulations, the time-invariant individual effects αi are drawn from four alternative distri-

butions: uniform, beta, Gaussian, and Bernoulli, as plotted in Figure 2. The distributions have

been rescaled and shifted to make them more comparable. All distributions have a mean of zero,

or close to zero, and all, or most, of their probability mass lies within the interval [-1,1]. The dis-

tributions vary starkly, however, in their shape. The data generating processes (DGPs) correspond

to a “random effects” model as the distribution of αi does not depend on the regressor. This is

the simplest type of DGP and it allows us to focus on biases purely related to small samples and

the concordance problem. While additional dependence on regressors can potentially exacerbate

or attenuate those biases, we found that our conclusions are robust to introducing positive and

negative correlation between αi and xit (and some results from such DGPs are presented in the

Appendix, Figure A.1).

Below, we report simulation results for N = 100 and T ∈ {2, 4, 8, 12}. For each of the four

distributions from Figure 2, we draw one hundred values of αi first, and keep them fixed through all
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Monte Carlo replications. There is a single regressor, xit, which is drawn from a uniform distribution

with support [-1,1]. Again, this is done once for each T and kept fixed over replications. Finally,

the binary dependent variables yit are obtained as

y
(r)
it = 1(αi + βxit + ε

(r)
it > 0), i = 1, . . . , 100 t = 1, . . . , T,

where ε
(r)
it has a standard normal distribution, β = 1, and r = 1, . . . , 500 denotes Monte Carlo

replications.

In each of the 500 replications, we keep track of the fraction of concordant, or perfectly predicted,

observations, i.e., the fraction of cross-sectional units for which ȳ
(r)
i = 0 or ȳ

(r)
i = 1. For instance,

with T = 4 and a uniformly distributed αi, the average fraction of concordant observations over

the 500 replications amounts to 24 per cent. This fraction is somewhat lower for the beta (15 per

cent) and Bernoulli (20 per cent) distributions, and higher for the normal distribution (28 per cent).

Plots and summary statistics of our results are based on all finite estimates: since the maximum

likelihood estimator of αi does not exist for concordant observations, the effective replication sample

size is below 500 in these cases.

Our choice of simulation DGP is a special case of the DGP introduced by Heckman (1991) and

widely adopted in the bias-correction literature for discrete choice models (e.g. Hahn and Newey,

2004, Fernández-Val; 2009, and others). There are two differences regarding the original DGP.

First, unlike in the original DGP, xit is not serially correlated in our DGP, but we specify a larger

support for the regressor’s uniform distribution ([-1,1] instead of the original [-0.5,0.5]). Second,

Heckman’s DGP only considers αi ∼ N(0, 1), where we consider several distributions, albeit with

a lower baseline variance. Additional simulations, discussed below, show results for increasing the

variance in our baseline (beyond Heckman’s DGP) as well as results for Heckman’s DGP.

3.2 Results for quantities other than α̂i

While our interest is obtaining individual predictions of α̂i, we first show results for the estimated

β as well as as for marginal or partial effects of xit. Table 1 presents means and standard deviations

of the estimated β̂ML and β̂BRFE across different distributions of αi and different numbers of time

periods. The true value is 1. The corresponding entries in the table confirm that the ML estimator

for the common parameter suffers from incidental parameters bias. The bias is sizeable regardless

of the distribution of αi, and it amounts to about 110, 40, 15 and 10 per cent for T equal to 2, 4, 8
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and 12, respectively. In contrast, BRFE effectively removes much of the bias in β̂. Even for T = 2,

only a bias of about -10 per cent is left. At T = 4 the bias falls to between 0.6 per cent (Bernoulli)

and 2.3 per cent (normal).

−−−−−−−−− Table 1 about here −−−−−−−−−

One of the differences between BRFE and ML estimation is that concordant observations contribute

to estimation of β in the former but not in the latter case. This affects the relative precision of

the two estimators. For T = 2, where the degree of concordance is most severe, the standard

deviation of β̂BRFE is much smaller than that of β̂ML, by a factor varying between 2.5 and almost

4, depending on data generating process. For T = 12, the difference is reduced to around 10 per

cent.

−−−−−−−−− Table 2 about here −−−−−−−−−

Table 2 shows results for marginal effects and predicted probabilities. The table entries contain

ratios of the average estimates to the true value. In line with other studies (e.g. Alexander

and Breunig, 2016, and references therein), the ML estimates of the average marginal effect are

less biased than the β coefficient. In contrast, the BRFE estimates are more biased than their

corresponding β estimates. (This is a consequence of the bias-reduction which corrects for bias

in the coefficients, introducing bias in any non-linear transformation of them). However, overall

BRFE still is substantially less biased than ML for short panels. For T = 2 and T = 4, the average

marginal effects estimated by ML have biases between 30-50 percent (BR: 15-20 percent) and 15-30

percent (BR: around 10 percent). For longer panels, the differences are smaller, and it appears that

ML converges to the true quantities at a somewhat faster rate. The table also shows the marginal

effect at the median, for which the ML estimates display generally larger biases than for the average

marginal effect. BRFE estimates, on the contrary, tend to be only minimally worse. Finally, the

table also shows predicted probabilities. For these, biases seem to be substantially smaller overall

and BRFE estimates consistently outperform ML estimates.

Since β coefficients and marginal effects have been the object of interest in the literature on bias

correction, we can compare the performance of BRFE to that of other such estimators. In the

Appendix (Table A.1), we present results from the Heckman (1991) DGP for BRFE and ML, and

contrast this to the results obtained for ML and six different bias-correction estimators in this DGP
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by Alexander and Breunig (2016). These include three estimators proposed by Newey and Hahn

(2004), as well as the estimators proposed by Fernández-Val (2009), Dhaene and Jochmans (2015),

and Bartolucci et al. (2016). The results show that BRFE performs well within the range of these

estimators from the literature in terms of estimating β and marginal effects. However, as mentioned

previously, when the interest lies in obtaining predictions of αi, BRFE has the advantage that it

obtains finite α̂i for all i including those of concordant units.

3.3 Predicting individual effects α̂i

Before looking at the individual predictions of α̂i, we start by examining the estimation of overall

features of the distribution of αi. Table 3 lists, for each of the four distributions of αi, the estimated

mean, standard deviation, skewness and kurtosis of the N = 100 predictions, averaged over 500

replications. These can be benchmarked against the corresponding moments of the distribution of

the (once) simulated αi’s, for instance -0.030, 0.451, -0.980 and 1.960 in the case of the Bernoulli

data generating process.

−−−−−−−−− Table 3 about here −−−−−−−−−

For the longer time horizons, T = 12 and to a lesser extent also T = 8, there is not much of a

difference between ML and BRFE. Both estimators are centered roughly at the true mean with

the right variance. The third and fourth moment are likewise estimated quite accurately. For the

shorter panels, the BRFE estimator performs much better than ML. For example, the mean of the

ML predictions has a sign opposite to that of the true mean in 7 out of 8 cases (for T = 2 and

T = 4). Regarding variation, we find that for short panels (in particular for T = 2), the BRFE

estimator underestimates the variance of the generated individual effects somewhat, reflecting the

shrinkage property of the BRFE estimator. The ML estimator also displays a poor performance

in estimating the skewness of the distribution with T = 2 where BRFE gives averages which are

much closer to the true values.

We have seen in Table 3 that the BRFE estimates α̂BRFEi are approximately centered at the true

mean ᾱi for each of the four distributions (normal, Bernoulli, uniform and beta). However, from

the point of view of estimating individual αi’s, this results is not very informative. For example,

an upward bias for large αi’s and a downward bias for small αi’s might simply offset each other.

Figures 3, 5 and 6 therefore plot the mean prediction, over the r = 500 replications, separately
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for each true value of αi. All results are based on a cross-section size of N = 100. Points on the

45-degree line indicate the absence of bias. Figure 4, showing the results from the Bernoulli DGP, is

an exception. Here, αi can only take two values, and we compare the entire empirical distribution

function of α̂i to the step function implied by the true Bernoulli DGP (with jumps at -.75 and .25,

see Figure 2).

Each figure has a 2× 2 format, one for the estimation method (ML versus BRFE) and one for the

time dimension (T = 4 versus T = 8).

−−−−−−−−− Figure 3 about here −−−−−−−−−

Figure 3 shows results for the normally distributed individual effect. The scale on the y-axis

indicates that the true draws of αi varied from -2.0 to 1.6 in this case. Naturally, the density of

observations increases as we move to the center of the distribution. In order to compute the mean

of the ML estimates, we had to drop all concordant observations which are more prevalent for αi’s

located in the tail of the distribution. Given this necessary adjustment, and for T = 4, we find

that the ML means display a substantial bias. The bias is positive for αi’ below zero, and negative

for αi’s above zero, and increasing, in absolute terms, as αi’s move towards the tails. Doubling the

sample size from T = 4 to T = 8 improves the ML estimates, although bias remains in the tails.

The BRFE means are computed on the full sample, as they include values for concordant observa-

tions. They are close to the 45-degree line, even for the small panel, although some bias emerges

for αi’s more than one standard deviation above or below its mean. Here, the shrinkage towards

zero starts having a noticeable effect, with an upward bias being observed for large negative αi’s

and a downward bias for large positive αi’s. The pattern is similar when the sample size is doubled,

although the magnitude of the biases in the tails decreases. The fit in the center of the distribution

is even tighter.

−−−−−−−−− Figure 4 about here −−−−−−−−−

A comparison of the empirical distribution functions in Figure 4 shows a good recovery of the binary

true distribution function through the BRFE estimator, with two separate clusters of estimates

closely centered around the true values -0.75 and 0.25; The fit is already quite good for T = 4 and

further improves for T = 8. By contrast, the ML estimates in the small sample are spread from 0.8
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to 0.5 and “almost uniformly,” which would be the 45 degree line. The binary nature of the true

αi’s only emerges in the longer panels.

−−−−−−−−− Figure 5 about here −−−−−−−−−

Finally, Figures 5 and 6 are based on bounded but continuous distributions for the individual effect,

a uniform(-1,1) distribution in case of Figure 5 and a scaled beta distribution in case of Figure 6,

the latter with values between -0.5 and 0.7; In the context of the probit model, this means that

the probability of a success is bounded, as well, for the average xit between Φ(−0.5) = 30.9% and

Φ(0.7) = 75.8% for the beta DGP. As a consequence, the beta simulations produce less concordance

(overall 15 per cent) compared to the normal simulations (28 per cent), and avoiding the tails

improves the fit substantially. Although to a lesser degree, this is true also for the uniform DGP.

The main message from these simulation results is that the BRFE method gives approximately

unbiased estimates of the individual effects regardless of sample size, whereas the ML method is

unreliable for T = 4, while it works satisfactorily for the larger sample, where estimated means are

mostly lined up along the 45 degree line. These conclusions also hold in similar DGPs but with

correlation between the indvidual effects and the covariate, as illustrated in the Appendix for the

case of T = 4, αi ∼ normal, in DGPs with both positive and negative correlation between xit and

αi.

−−−−−−−−− Figure 6 about here −−−−−−−−−

3.4 Robustness check: Replication of Heckman (1991) DGP and comparison

to nonparametric bias-correction

Figure A.2 in the Appendix shows graphs for results obtained for the Heckman (1991) DGP;

specifically, the implementation of that DGP as in Hahn and Newey (2004), Fernández-Val (2009)

and Alexander and Breunig (2016). Compared to our baseline with normally distributed αi, this

DGP features a regressor that is serially correlated and standard normally distributed αi. The

figure shows results obtained for T = 4 and T = 8. The increased heterogeneity in αi result in a

visible deterioration of the ML estimates. BR is able to predict the true αi quite accurately even in

the shorter panel over most of the distribution. However, there are some larger biases for the units

in the right tail of the distribution. In the next robustness check below, we explore the sensitivity

of ML and BRFE to the degree of heterogeneity in αi more systematically.
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We also used this DGP to assess the prediction of αi using a different, nonparametric bias-correction

estimator, the split-panel jackknife estimator of Dhaene and Jochmans (2015). The results are

presented alongside those of ML and BRFE in Figure A.2. The estimates of these nonparametric

estimator are clearly inferior to both those of ML and BRFE when it comes to prediction of αi.

The split-panel jackknife estimator relies on splitting the data in half along its time dimension

and estimating the model in each half. This procedure exacerbates the problem of concordance,

since even a unit which is discordant over the full T periods might be concordant in either the first

or second T/2 time periods. Thus, such methods do not appear well-suited to predict individual

effects in short panels.

3.5 Sensitivity to the degree of heterogeneity across units

The simulations so far have focussed on recovering the shape of the distribution of the individual

units, αi. We now introduce an extra dimension on which to perform the simulation experiment:

the simulated (true) values of αi are multiplied by a scalar κ. This parameter controls the degree of

heterogeneity across units. We vary κ = 0.1, 0.2, . . . , 1.5. Thus, κ = 1 corresponds to the baseline

results presented previously. For κ = 0.1 and κ = 1.5 the standard deviation of the individual

effects is reduced to 10 per cent and increased to 150 per cent of that in the baseline results,

respectively. Figure 7 presents graphs with ML and BRFE estimates of the mean and standard

deviation of the distribution of individual effects for each of the 15 values of κ, separately for T = 4

and T = 8 and each of the four distributions.

−−−−−−−−− Figure 7 about here −−−−−−−−−

For the estimation of the mean of αi, with T = 4 there is only a small bias in the BRFE estimates

in the Bernoulli and uniform DGPs; with T = 8, the BRFE estimates are virtually unbiased. Bias

in the estimates of the mean of αi is more of a problem for ML with T = 4, and the bias increases

with larger κ. However, most of this bias also disappears with T = 8. An exception is the Bernoulli

distribution, where the ML bias visibly persists even for large κ.

The estimation of the standard deviation of αi is more difficult. At T = 4, BRFE underestimates

the standard deviation, and the degree of underestimation increases with κ. While for the Bernoulli

and beta distributions the underestimation is minor, it is quite visible in the case of the normal

and uniform distributions in conjunction with larger κ. For virtually all distributions and all values
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of κ, the performance of ML is substantially worse than that of BRFE. For small values of κ,

ML overestimates the standard deviation; for large values, it underestimates it. Both estimators

improve considerably with T = 8. Bias only remains for large κ in the normal DGP (and, for the

ML estimator, the uniform DGP). Still, even in these cases, the reduction of the bias in BRFE

relative to ML is sizeable.

In the Appendix, Figure A.3 shows the performance of BRFE and ML in predicting the individual

αi in the DGPs with the largest standard deviation (κ = 1.5) in graphs identical to Figures 3–6.

In these distributions, a substantial share of the probability mass of the empirical distribution of

αi may lie outside the [-1,1] interval; for the most extreme case (normal), this share amounts to

about 40 percent. The results from the figure indicate that even in this challenging DGP, BRFE

provides nearly unbiased estimates for most of the αi, but the estimation of the αi in the tails of

the distributions deteriorates. In contrast, the ML estimates of αi are often biased along the whole

distribution of αi.

While we have stopped at a maximum of κ = 1.5, the results suggest that the performance of the

estimation would worsen further for higher κ. However, with a small T , such as T = 4, if κ is much

larger than what we have presented in the simulations, there will be almost no longitudinal variation

left in the data, making it unlikely that such data would be used in practice for a longitudinal

analysis. Researchers can check the standard deviation of the estimated distribution of individual

effects. This is especially simple in probit models, where the standard deviation of the idiosyncratic

errors is normalized to 1. If the standard deviation of αi is high, care should be taken in interpreting

and using BRFE estimates of individual αi that are at either end of the quantile distribution. In

the application we present in the next section, for instance, the estimated standard deviation of the

individual effects (T = 5) is around 0.97 and 0.77 for the two samples used (males and females),

and would correspond to a κ of around 1.3 and 1.0, respectively, under a normal distribution. Thus,

even allowing for the fact that this estimated standard deviation of individual effects is somewhat

underestimated, the application falls well within the range presented in the simulations.

4 Application to the determinants of doctor visits

To illustrate the benefits of being able to predict individual effects for every individual, we use

data for a 2000–2014 subsample of the Socio-Economic Panel, a large representative household

panel survey for Germany (SOEP, see Wagner, Frick and Schupp 2007). The dependent variable
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is an indicator variable, stating whether a visit to a physician took place (anyvisit = 1), or did

not take place (anyvisit = 0), during the three-months period prior to the annual interview. We

apply the BRFE estimator to obtain predictions of the individual effects in the FE panel probit

model. Our results relate to the previous literature on the demand for health services based on

the number of doctor visits, a count variable (see, e.g., Cameron and Trivedi, 1986; Winkelmann,

2004). Specifically, we zoom in on the extensive margin decision, and correspondingly on the first

step of a possible hurdle count data model (Mullahy, 1986; Pohlmeier and Ulrich, 1995, Kunz

and Winkelmann, 2017). Our approach also relates more broadly to other strands of the health

economics literature. For instance, Carro and Traferri (2014) use a bias-corrected estimator for a

model of self-assessed health and considers the implied distribution of two sets of individual effects.

We focus on two advantages of our approach that are likely to be important to the study of persis-

tence in health care utilisation. First, we assess whether individual effects are in fact “fixed”, i.e.,

capture time-invariant individual heterogeneity, such as genetic makeup or childhood experiences.

One way to address this issue is to split the sample into different subperiods, for example 2000–2004,

2005–2009, and 2010–2014, to estimate separate individual effects for each period and then verify

their stability over time. Second, we assess the predictive power of these doctoral visit individual

effects onto other domains of future health care use, such as the propensity of future hospitalization.

In this case, the idea is that individual effects obtained from current outcomes capture long-term

health capital, which can be assessed by considering their correlation with future health outcomes.

Table 3 provides selected summary statistics, separately for men and women and the three time

periods. We only include individuals who are aged between 20-65 at the time of interview, drop

observations with missing values on any of the variables, and retain a balanced panel of 55,230

person-year observations, representing 1,997 women and 1,685 men. The use of a balanced sample

is not necessary but it simplifies the analysis of changes in the distribution of individual effects. As

a consequence of the way the sample is constructed, the average age increases by exactly five years

for each five year sub-period. Hence, it is not surprising that the share of women and men with

at least one visit increases over time, and self-assessed health (SAH) worsens. SAH is measured

on a five-point scale, where the best outcome [1] means “Very good” and the worst outcome [5]

means “Bad” (the intermediate outcomes are “Good”, “Satisfactory”, and “Poor”, respectively).

The main difference between males and females is the latter’s overall higher prevalence of doctor

visits.

−−−−−−−−− Table 4 about here −−−−−−−−−
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The last row of the sub-panels of Table 4 states the proportion of concordant outcomes by gender

and period. This proportion varies from a minimum of 29 per cent to a maximum of 46 per cent. It

tends to increase over time for both men and women, which is due to the fact that overall utilization

increases, making it more likely that individuals have outcome “one” (i.e., at least one visit) in

each year.

4.1 Estimation results

Two models were estimated, separately by gender, as displayed in Table 5. First, a pooled cross-

sectional probit model that does not include individual effects, estimated by ML (Columns 1 and

4). Second, a fixed effect probit model, estimated by ML (2,5) and BRFE (3,6). Both ML and the

BRFE estimate three sets of individual fixed effects: three indicator variables are included for each

individual, one for each five year period.

One important takeaway is that the fixed effects ML probit coefficients, based on a model with

dummies for each person without further adjustment, tend to be biased upward: they are always

at least as large, in absolute values, as the BRFE probit estimates, and often substantially larger.

This reflects the incidental parameters bias for a set-up where each of the individual effects needs

to be estimated based on T = 5 observations only. Due to the substantial proportion of concordant

observations, the effective ML sample size is reduced by 33% for men, and by 42% for women.

The reduced sample size leads to estimated standard errors that are correspondingly higher for ML

relative to BRFE.

Table 5 presents several sets of standard errors. The standard errors in parentheses are the conven-

tional ones, based on the inverse of the information matrix evaluated at the value of the estimates.

For the fixed effects ML probit, these standard errors are inconsistent due to the inconsistency of

the estimates product of the incidental parameter problem (e.g., Hahn and Newey, 2004). The

corresponding BRFE standard errors do not suffer from this problem given that the first-order

bias in the estimation of αi is removed. However, given that the BRFE estimator is a regular

M-estimator, standard errors can also be based on the general Eicker-White-Huber asymptotic

variance (the well-known sandwich estimator involving the inverse of the information matrix and

the outer product of the score). Such standard errors can give a better representation of the ac-

curacy of the estimation since they do not rely on the correct specification of the model. They

also make it straightforward to account for potential correlation in the errors (clustering). In the

table, we have included such robust standard errors in brackets, accounting for possible correlation
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within individual-effect units. Across estimators, the robust standard errors are larger than the

conventional ones, although not very much. Finally, the table contains a third set of standard errors

for the BRFE estimates, in braces. These are bootstrap standard errors (resampled from clusters

at the level of the individual-effect units), which we present to evaluate how well the asymptotic

BRFE standard errors (in parentheses and brackets) compare to standard errors based on the ob-

served sample size. The bootstrap standard errors in the table are of a magnitude similar to the

asymptotic ones, most often being either equal or slightly smaller to the robust standard errors.

Thus, the use of robust (asymptotic) standard errors seems to be an advisable conservative choice

in practice for the proposed estimator.

−−−−−−−−− Table 5 about here −−−−−−−−−

In terms of substantive results (based on the BRFE probit estimates), better self-assessed health

reduced the probability of any doctor visit for both men and women. We calculate a simple

approximate upper bound for the effect size: for a man at the margin, i.e., with a 50/50 chance

of seeing a doctor, a one-point worsening in SAH increases the probability of seeing a doctor by

about 0.36 × 0.4 =14.4 percentage points. Married women are more likely to see a doctor than

non-married ones, and having more education reduces the probability only for men.

4.2 Analysing individual effects

The BRFE probit estimator directly provides predictions for the individual-specific effects. These

are available for further analyses, e.g. for ranking of individuals by their underlying propensity of

experiencing the event. Figure 8 depicts a few examples of the distributions of individual effects.

Panel A compares the distribution of individual effects from the first period (2000–2004) between

males and females. Panel B compares the distribution of individual effects of males over time

(2000–2004 vs. 2010–2014) and C, analogously, the ones of females.

−−−−−−−−− Figure 8 about here −−−−−−−−−

The shapes of the distributions differ markedly. For males, the time constant propensity net of

covariates has a larger mean, is more variable, and appears to be unimodal. In contrast, the females’

individual effects distribution is shifted to the left and exhibits three modal points, which could
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indicate a finite mixture type of distribution. This shows the benefits of the fixed effects approach,

which does not restrict the shape of the unobserved heterogeneity, relative to, for example, random

effects models with parametric distributional assumptions.

To test that the BRFE is indeed able to predict these individual effects well, we performed Monte

Carlo simulations based on resampling from the actual SOEP data and estimating the full empirical

model. That is, the variables, the distribution of the individual effects, and the value of the β

parameters are those estimated with real data. We limited the simulation to the first period (2000–

2004) for both women and men, and the results are shown in Appendix Figure A.4. The figure

confirms that the estimator is able to precisely recover the true values in an empirically relevant

setting.

Since for each of the N = 1, 685 males and 1, 997 females we have obtained 3 distinct predictions,

the total variance of the 3N effects (5,055 for males and 5,991 for females) can be decomposed

into a within-person and a between-person component. The individual-specific component is fairly

stable over time: Of its total variance (0.956 for males and 0.601 for females) variation within

individuals contributes not more than 26 and 36 per cent, respectively.

The bivariate scatter plots in Figure 9 provide another perspective on stability over time. We

find a substantial positive correlation in estimated individual effects for the same person between

adjacent sample periods (black dots and linear fit). Yet, the fit is far from the 45 degree line,

which would imply complete stability. When comparing the first to the last period, ten years later

(lightly-colored dots and linear fit), the correlation is again lower (indicated by the flatter linear

fit), although only slightly so. For women, the five-year fixed effects change somewhat more over

the longer time frame, implying a slightly lower stability over time.

−−−−−−−−− Figure 9 about here −−−−−−−−−

In Figure 10, we assess the predictive power of the first-period individual effects for another measure

of heath care utilisation: The ten-year-ahead probability to visit any hospital (in the last three

month before the annual survey elicitation). To assess this, we group the first-period individual

effects (2000-2004) into ten percentile bins and plot them against the unconditional mean hospital

visit probability in the last period of our sample (2010-2014). The percentile ranks of the time-

constant doctor-visit individual effects are clearly predictive of the overall probability to visit any

hospital ten years later, and this predictive ability is stronger for females than for males. Taken

together, these results show the persistence in unobserved heterogeneity not only over a long period
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of an individual’s life cycle, but also the spillover into other (more costly) domains of health care

use, findings which might need to be better accounted for in general models of health care demand.

−−−−−−−−− Figure 10 about here −−−−−−−−−

Finally, we use predictions to explore any time-invariant relationships between the observed and

unobserved components of the demand for health services. For men, the correlation between α̂i

and x̄′iβ̂ (where x̄i are the average characteristics) equals −0.403, −0.414, and −0.409 in the first,

second, and third period, respectively; Hence, individual differences in observed factors tend to be

associated with unobservables that move in the opposite direction. Ignoring this correlation (such as

in the pooled probit model) would understate the importance of either of the two. Interestingly, the

correlation among females, in contrast, is almost non-existent (0.018, 0.031, and 0.062, respectively),

implying a potentially less problematic assessment of the cross-sectional variation.

5 Conclusions

This paper discusses the problem of estimating a panel probit model with individual-specific con-

stants treated as fixed effects. A useful estimator should address the incidental parameters problem,

provide finite estimates for all individual effects, and ideally estimate them with small bias. We

show that a specific first-order bias reduction method, based on a modified joint score function of

the structural parameters and the individual effects as in Kosmidis and Firth (2009), addresses all

three of the above issues.

An extended simulation study confirms that the theoretical properties of this estimator materialize

already in quite small samples (e.g. T = 4 and N = 100). The incidental parameter bias disappears,

and the estimated individual effects are nearly unbiased for the true heterogeneity parameters.

While other first-order bias correction methods have been proposed to overcome the incidental

parameters problem (e.g. Hahn and Newey, 2004, or Bester and Hansen, 2009), these do not

remove the concordance problem that is so common in applications, especially in short panels.

In the data of our application—balanced panels covering five-year periods—about 40 per cent of

the observations were concordant and would have led to infinite estimates for the corresponding

individual effects had we used the conventional fixed effects ML estimators or other bias-corrected

estimators.
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One could argue that the technical problem of binary response models leading to infinite estimates

of αi is not necessarily a problem; that some αi might actually be equal to positive or negative

infinity. However, for many applications, having infinite individual effects is clearly unattractive.

From a theoretical point of view, an infinite αi implies that no unobserved or observed shock could

possibly produce a change in the outcome, a very strong assumption. In our application, this

would imply a person that has not visited a doctor in five years will under no circumstance ever

visit a doctor. From a practical point of view, discarding the information contained in time-varying

covariates seems inefficient and leads to a clumping of predictions with the same values. Moreover,

as seen in the simulations and application, the exclusion of a potentially large share of the data

from the estimation is also likely to lead to larger standard errors for the parameter β.

Of course one can focus on predicted probabilities instead of directly on the individual effects. In

that case, the infinite individual effects of concordant units translate to fitted probabilities of zero

and one. Obviously, this does not solve the problem of a clump in the predictions stemming from

ignoring the information in the covariates. Again, from an empirical point of view, making extreme

predictions that assign probability of one and zero based on a small number of observations might

often be undesirable. Finally, obtaining predicted probabilities of zero and one can be problematic

when used in further analyses that require probabilities to be strictly bounded away from these

values; examples include using the predictions for inverse probability weighting (such as propensity

score and marginal treatment effects methods) or as inputs in some structural dynamic discrete

choice models. This last problem also affects FE linear probability models estimated by OLS. While

they obtain finite estimates for the individual effects of concordant units, linear probability models

do not restrict the range of predictions to the unit interval, and concordant units frequently result

in predictions greater than one or smaller than zero. The advocated BRFE probit does not suffer

from any of these problems. It produces consistent and meaningful fitted probabilities which lie

strictly within the (0,1) interval.

Because of its advantages over other approaches across a number of domains, coupled with the

simplicity of implementing it, we believe that the BRFE probit estimator has the essential features

of a new workhorse for the estimation of panel probit models. We focused in our discussion on

the probit model as it is a common choice in empirical work, but, as shown in the appendix, the

advocated approach is applicable to a number of other binary response models as well, such as

logit or cloglog. More broadly, the estimator can be extended to other non-linear fixed effects panel

models which suffer from perfect prediction, such as models for ordered and count data. Finally,

since bias-reduction eliminates any first-order bias, including, potentially, the bias introduced by
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specifications where there are lags of the dependent variable, the BRFE approach can also be di-

rectly applied to dynamic panel data models with individual effects and lagged dependent variables

(see Buchmueller et al., 2021, for an example).
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Figures and Tables
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Figure 1: Share of Concordant Units and MSE in BRFE Probit Models without Covariates

Notes: The graphs in the figure plot MSE(α̂BRFE
i ) against the share of concordant units, P (ȳi =

0) + P (ȳi = 1), in panel probit models without covariates, P (yit = 1) = Φ(αi). The decomposition
of MSE into contributions from concordant and discordant observations refers to Eq. (16), where the
concordant contribution is equal to the sum of the first (t = 0) and last (t = T ) addends of the right-
hand-side of Eq. (16), and the discordant contribution is equal to the remainder.
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Figure 2: Distributions of αi

Notes: Distributions from which αi were drawn for the Monte Carlo simulation: “uniform” corresponds to a uniform distribution
on the interval [-1,1]; “beta”, to a Beta distribution with shape parameters 2 and 5, rescaled to the interval [-1;1] by multiplying
the variable by 2 and subtracting 0.5; “bernoulli”, to a modified Bernoulli distribution taking the value -0.75 with probability
0.25, and the value 0.25 with probability 0.75; and “normal”, to a Normal distribution with mean 0 and variance 0.5.
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Figure 3: Mean of estimated individual effects by true αi (αi ∼ normal)

Notes: Graphs show average estimates of α1, . . . , α100 over 500 replications against their true values.
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Figure 4: Estimated versus true distributions of αi (αi ∼ Bernoulli)

Notes: Graphs show the empirical cdf of the hundred true αi against the empirical cdf of the hundred average
α̂i estimated over 500 replications.
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Figure 5: Mean of estimated individual effects by true αi (αi ∼ uniform)

Notes: Graphs show average estimates of α1, . . . , α100 over 500 replications against their true values.
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Notes: Graphs show average estimates of α1, . . . , α100 over 500 replications against their true values.
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Figure 7: Estimated mean and estimated standard deviation of the distribution of individual effects (αi)
over different levels of heterogeneity (κ) of the individual effects

Notes: Graphs show average estimates of the mean of α̂i − ᾱML
i and α̂i − ᾱBRFE

i (left-hand-side panels, titled “MEAN”) and the

standard deviation of α̂ML
i and α̂BRFE

i (right-hand-side panels, titled “STANDARD DEVIATION”) over 500 Monte Carlo replications
in data generating processes with 4 and 8 time periods, and with κ = 0.1, 0.2, . . . , 1.5. In the replications corresponding to each point
on the x-axis, all (true) αi were multiplied by a fixed scalar κ. The point κ = 1 corresponds to the results reported in Table 1.
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Table 1: MC Simulation: Mean and Standard Deviation [SD] of β̂ (β = 1, 500 replications)

T = 2 T = 4 T = 8 T = 12

Mean SD Mean SD Mean SD Mean SD

αi ∼ Bernoulli
ML 2.105 0.673 1.400 0.256 1.154 0.122 1.092 0.089
BRFE 0.953 0.240 1.006 0.169 1.007 0.103 1.002 0.080

αi ∼ Uniform
ML 2.206 0.747 1.427 0.272 1.163 0.122 1.098 0.091
BRFE 0.928 0.242 0.997 0.173 1.005 0.102 1.004 0.082

αi ∼ Beta
ML 2.075 0.716 1.364 0.231 1.143 0.125 1.084 0.086
BRFE 0.942 0.268 1.013 0.159 1.004 0.107 0.999 0.078

αi ∼ Normal
ML 2.195 0.990 1.410 0.263 1.163 0.126 1.103 0.090
BRFE 0.889 0.250 0.977 0.165 0.997 0.105 1.001 0.080

Notes: Cells contain the average and standard deviation, over 500 replications, of the
estimated β for each of the two estimators, ML and BRFE. The true value of β is 1.
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Table 4: Selected descriptive statistics, by period

2000-2004 2005-2009 2010-2014 All periods

(1) (2) (3) (4)

Men
Any doctor, last 3 month (Yes/No) 0.559 0.595 0.638 0.597
Any hospital, last 3 month (Yes/No) 0.073 0.079 0.102 0.085
Age/10 3.954 4.454 4.954 4.454
Self-assessed health 2.385 2.555 2.671 2.537
Disability (Yes/No) 0.055 0.085 0.127 0.089
Years of education 12.478 12.567 12.595 12.546
Share of concordant obs. 0.291 0.312 0.400 0.335
Women
Any doctor, last 3 month (Yes/No) 0.722 0.729 0.742 0.731
Any hospital, last 3 month (Yes/No) 0.122 0.101 0.103 0.109
Age/10 3.904 4.404 4.904 4.404
Self-assessed health 2.437 2.560 2.675 2.557
Disability (Yes/No) 0.044 0.067 0.104 0.072
Years of education 12.359 12.457 12.485 12.434
Share of concordant obs. 0.389 0.418 0.456 0.421

Source: SOEP v33, 2000–2014, own calculations.
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Table 5: ML Probit and BRFE Probit results, all periods

Men Women

Pooled Fixed Effects Probit Pooled Fixed Effects Probit

Probit ML BRFE Probit ML BRFE

(1) (2) (3) (4) (5) (6)

Self-assessed health 0.40 0.49 0.36 0.36 0.45 0.31
(0.01) (0.02) (0.02) (0.01) (0.02) (0.01)
[0.01] [0.03] [0.02] [0.01] [0.02] [0.02]

{0.02} {0.02}

Disability (Yes/No) 0.68 0.26 0.15 0.79 0.61 0.28
(0.04) (0.14) (0.09) (0.05) (0.17) (0.08)
[0.06] [0.16] [0.10] [0.06] [0.20] [0.08]

{0.10} {0.09}

Married (Yes/No) 0.05 0.13 0.10 0.02 0.14 0.10
(0.02) (0.08) (0.06) (0.02) (0.08) (0.05)
[0.03] [0.10] [0.08] [0.03] [0.10] [0.07]

{0.06} {0.07}

Age/10 -0.53 -0.94 -0.67 -0.65 -0.89 -0.62
(0.08) (0.40) (0.31) (0.08) (0.38) (0.26)
[0.12] [0.47] [0.39] [0.10] [0.45] [0.34]

{0.36} {0.30}

Age2/100 0.06 0.13 0.09 0.07 0.08 0.06
(0.01) (0.04) (0.03) (0.01) (0.04) (0.03)
[0.01] [0.05] [0.04] [0.01] [0.05] [0.04]

{0.04} {0.03}

Years of education 0.02 -0.24 -0.17 0.01 -0.01 -0.01
(0.00) (0.07) (0.05) (0.00) (0.05) (0.04)
[0.00] [0.07] [0.06] [0.00] [0.06] [0.05]

{0.05} {0.04}

Fulltime work (Yes/No) 0.03 0.03 0.03 0.09 0.16 0.12
(0.04) (0.09) (0.06) (0.02) (0.06) (0.04)
[0.05] [0.10] [0.08] [0.03] [0.07] [0.06]

{0.07} {0.05}

Parttime work (Yes/No) 0.09 0.14 0.10 0.06 0.06 0.04
(0.04) (0.09) (0.06) (0.02) (0.05) (0.03)
[0.05] [0.09] [0.07] [0.03] [0.06] [0.04]

{0.06} {0.04}

Log household income 0.06 -0.07 -0.05 0.05 -0.01 -0.01
(0.02) (0.05) (0.04) (0.02) (0.05) (0.03)
[0.02] [0.06] [0.05] [0.02] [0.05] [0.04]

{0.04} {0.04}

Nr. of observations 25,275 16,820 25,275 29,955 17,345 29,955
Nr. of individuals 1,685 1,194 1,685 1,997 1,221 1,997
Individual×5-year-period

fixed effects X X X X

Notes: Table contains main estimation results (coefficients and standard errors), regressing any doctor
visit in last 3 month, separately for males (Columns 1-3) and females (Columns 4-6) using pooled ML pro-
bit (1,4), ML fixed effects probit (2,5) including three individual indicator variables for individual×period
(2000-2004, 2005-2009, 2010-2014), and the BRFE probit estimator (3,6). Standard errors in parentheses,
cluster-robust standard errors in brackets (clustered at the level of the fixed effects), bootstrap standard
errors in braces (resampled from clusters at the level of the fixed effects, 200 replications).
Source: SOEP v33, 2000–2014, own calculations.
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Appendix

A Additional Monte Carlo simulation results

Table A.1: MC Simulation: Replication of Alexander and Breunig (2016), Tables 1-2

Own simulations Simulations reported in Alexander and Breunig (2016)

Statistic BRFE ML ML Jackknife HN-B HN-M FV SPJ MPL

T = 4 Mean of β̂ 0.895 1.400 1.402 0.755 1.105 1.211 1.054 0.580 1.148

Median of β̂ 0.881 1.354 1.376 0.760 1.084 1.199 1.041 0.631 1.135

SD of β̂ 0.275 0.446 0.404 0.253 0.315 0.340 0.284 0.823 0.316

RMSE of β̂ 0.294 0.599 0.570 0.352 0.332 0.400 0.289 0.924 0.349

T = 8 Mean of β̂ 0.976 1.178 1.188 0.957 1.058 1.098 1.023 0.942 1.059

Median of β̂ 0.967 1.166 1.191 0.958 1.060 1.100 1.025 0.944 1.061

SD of β̂ 0.147 0.181 0.146 0.114 0.129 0.127 0.120 0.251 0.126

RMSE of β̂ 0.149 0.254 0.238 0.122 0.142 0.160 0.123 0.257 0.139

T = 4 Average ME(x) 0.909 0.968 0.985 1.016 0.975 1.055 0.928 1.050 0.863
Median ME(x) 0.874 0.960 0.986 1.021 0.978 1.059 0.930 1.054 0.868
SD of ME(x) 0.126 0.257 0.253 0.285 0.257 0.269 0.234 0.407 0.221

RMSE of ME(x) 0.156 0.259 0.253 0.285 0.259 0.274 0.245 0.410 0.260

T = 8 Average ME(x) 0.981 0.989 0.998 1.007 1.007 1.035 0.983 1.002 0.951
Median ME(x) 1.053 1.150 0.994 1.004 1.003 1.031 0.979 0.993 0.948
SD of ME(x) 0.124 0.189 0.106 0.109 0.109 0.106 0.104 0.178 0.101

RMSE of ME(x) 0.125 0.190 0.106 0.110 0.109 0.112 0.106 0.178 0.112

Notes: Cells in the columns labelled “own simulations” contain statistics calculated over 500 replications of the same DGP as
in Alexander and Breunig (2016), Tables 1 (upper panel, statistics for β̂) and 2 (lower panel, statistics for marginal effects of
xit– indicated as ME(x)). The remaining columns are reproduced from Alexander and Breunig (2016, Tables 1–2). The true
value of β is 1. In the lower panel, statistics refer to ratios of estimated marginal effects to the true marginal effect. SD and
RMSE stand for standard deviation and root mean squared error. “Jackknife”, HN-B and HN-M are estimators proposed in
Hahn and Newey (2004), FV is the estimator in Fernández-Val (2009), SPJ is the estimator in Dhaene and Jochmans (2012),
and MPL is the estimator in Bartolucci et al (2014). The DGP is yit = 1(xitβ + αi + εit), xit = 0.1t + 0.5xit−1 + uit,
uit ∼ Uniform(−0.5, 0.5), xi0 = ui0, αi ∼ N(0, 1), ε ∼ N(0, 1).
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(A) αi ∼ normal, ρ=0.8
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(B) αi ∼ normal, ρ=-0.8
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Figure A.1: Appendix: Estimated versus true distributions of αi when αi and xit are correlated,
N=100, T=4

Notes: Graphs show average estimates of α1, . . . , α100 over 500 replications against their true values. The hun-
dred average α̂i estimated over 500 replications. The DGP has a regressor with the same marginal distribution
(xit ∼ U(−1, 1)) and an alpha with the same marginal distribution (αi ∼N(0, 0.5)) as in the simulations of
Section 3. The dependence between xit and αi is induced by a Gaussian copula with parameter ρ. In Panel
A, ρ = 0.8, and in Panel B ρ = −0.8, leading to a correlation between xit and αi of about 0.40 and -0.40,
respectively. The case of ρ=0 corresponds to Panel (A) of Figure 3 shown in Section 3.
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(A) T = 4
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(B) T = 8
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Figure A.2: Estimated versus true distributions of αi for the baseline DGP employed by Heckman
(1991), Hahn and Newey (2004), Fernández-Val (2009), and Alexander and Breunig (2016).

Notes: Graphs show average estimates of αi over 500 replications against their true values. SPJ denotes the
split panel jackknife estimator proposed in Dhaene and Jochmanas (2012) implemented through the STATA
command by Sun and Dhaene (2019). Of the 100 individual effects, the following 2 outliers were excluded from
the graphs for better visibility: The average estimates for α13=-2.80 were α̂ML

13 =-1.92 and α̂BRFE
13 =-2.26;

for SPJ, no finite estimates were obtained for α13. The average estimates for α49=-2.81 were α̂ML
49 =-1.82,

α̂BRFE
49 =-2.16, and α̂SPJ

49 =-0.79.
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DGP: αi ∼ Bernoulli
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DGP: αi ∼ uniform
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Figure A.3: DGP with κ = 1.5: Mean of estimated individual effects by true αi

Notes: Graphs show average estimates of α1, . . . , α100 over 500 replications against their true values.
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Figure A.4: Estimated versus true distributions of αi for a DGP based on the GSOEP data used in
the empirical application.

Notes: Graphs show average BRFE estimates of αi over 500 replications against their true values. “True”
values where obtained by performing BRFE probit of the probability of visiting the doctor with the same
specification as in the empirical application.
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B Details on the BRFE estimator for general binary response

panel models

B.1 Modified score for αi

For a general binary response fixed effects model with

P (yit = 1|xit, αi) = E(yit = 1|xit, αi) = G(ηit) = G(αi + x′itβ) i = 1, . . . , N, t = 1, . . . , T,

where G : IR→ (0, 1) is a known smooth and strictly increasing distribution function, the modified

score of the bias-reduced estimator for the parameter αi is

sBRFE(αi) = sML(αi) +
1

2

T∑
t=1

hit
g′it
git
,

where git = g(ηit) and g′it = g′(ηit) are the first and second derivative of Git = G(ηit) with respect

to αi, and hit is the it-th diagonal elements of the NT ×NT projection matrix

H = W 1/2X(X ′WX)−1X ′W 1/2,

with X the NT × (K +N) matrix of the K regressors and N panel unit indicator vectors, and W

is the NT ×NT diagonal matrix with typical element

wit =
g2
it

Git(1−Git)
.

The expressions for probit, Git = Φ(ηit), are given in Section 2. For logit, Git = Λit = Λ(ηit) =

exp(ηit)/(1 + exp(ηit)), and so

sBRFE(αi) =
T∑
t=1

yit − Λit + hit

(
1

2
− Λit

)
,

with the corresponding hit being based on W with typical element wit = Λit(1− Λit).
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B.2 IRLS estimation

The BRFE estimator can be obtained by iteratively reweighted least squares. In iteration s + 1,

estimates are obtained by solving the the weighted least squares first order conditions

T∑
t=1

N∑
i=1

(
ỹsit − η̂s+1

it

)
ŵsit = 0,

where η̂s+1
it = α̂s+1

i +x′itβ̂
s+1 contains the updated estimates, and ỹsit and ŵsit are constructed using

iteration-s estimates of ηit. The expression for wit was given above, and ỹit is defined as

ỹit = ηit +
(y∗it −Git)

git
, with y∗it = yit +

1

2
hit

g′it
wit

.

For instance, for the probit model, y∗it = yit − hitηitΦit(1 − Φit)/(2φit); while for the logit model,

y∗it = yit + hit(0.5− Λit). (And ML estimates are obtained for y∗it = yit.)

B.3 Existence under concordance

In the cases of concordant panel units,
∑

t yit = 0 and
∑

t yit = T , a finite ML estimator for the

individual effect αi does not exist. We consider the case
∑

t yit = T for the BRFE estimator:

sBRFE(αi) =
T∑
t=1

git
Git

+
1

2
hit
g′it
git
.

Since Git is a smooth, strictly increasing distribution function, ln git is globally concave: its first

derivative, g′it/git, has a unique root with g′it/git being positive for small values of ηit (ηit → −∞)

and negative for large values of ηit (ηit →∞). This implies that the second term on the right-hand-

side of the equation,
∑

t
1
2hitg

′
it/git, is positive for small values of αi (αi → −∞) and negative for

large values of αi (αi →∞), as hit ∈ (0, 1]. Meanwhile, the first term,
∑

t git/Git, tends to zero for

small αi (αi → −∞) and to a positive constant or positive infinity for large αi (αi →∞). Therefore,

because sBRFE(αi) is continuous, there must exist a α̂BRFEi such that sBRFE(α̂BRFEi ) = 0.

A detailed example was given in Section 2 for Git = Φit. For logit, Git = Λit, and

sBRFE(αi) =
T∑
t=1

(1− Λit) +
1

2
hit (1− 2Λit) .
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As αi → −∞, the first term
∑

t 1 − Λit tends to T and the second to
∑

t hit/2 > 0; thus,

limα→−∞ s
BRFE(αi) > 0. As αi → ∞, the first term

∑
t 1 − Λit tends to 0 and the second to

−
∑

t hit/2 < 0; thus, limα→−∞ s
BRFE(αi) < 0. Therefore, sBRFE(α̂BRFEi ) = 0 exists.

Existence for the case
∑

t yit = 0 can be examined using the same arguments.
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