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Abstract

Empirical social science requires structured data. Traditionally, these data have arisen

from statistical agencies, surveys, or other controlled settings. But what of language,

political speech, and discourse more generally? Can text be data? Until very recently,

the journey from text to data has relied on human coding, severely limiting study scope.

Here, we introduce natural language processing (NLP), a field of artificial intelligence (AI),

and its application to discourse analysis at scale. We introduce AI/NLP’s key terminology,

concepts, and techniques, and demonstrate its application to the social sciences. In so

doing, we emphasise a major shift in AI/NLP technological capability now underway, due

largely to the development of transformer models. Our aim is to provide the quantitative

social scientists with both a guide to state-of-the-art AI/NLP in general, and something of

a road-map for the transformer revolution now sweeping through the landscape.

1



Introduction

Current methods in empirical social science require a particularly exacting form of quantified

inputs: structured data. Each observation should be represented by a complete set of numeric

features, residing together with hundreds or perhaps millions of counterparts, in tidy, complete,

and tabular formation. But the domain of sociological interest expands well beyond that of

the hitherto quantified world. Human language, speech, and discourse present a particularly

challenging domain of inquiry with their innate complexity and largely latent meaning codified

in combinatorially vast symbolic material. Writing during the pause between the great wars,

Bernays (1928) laid out the methods and motivations of the propagandist to shift public opinion,

and yet, he noted that (p.960), ‘No Bureau of Standards with micrometers exists for the expert

on human or public relations’.

To overcome this problem, social scientists have necessarily had to proceed with severe nar-

rowing assumptions and filters due to the laborious task of manually ‘coding’ discourse fragments,

such as speeches, reports or articles, by some taxonomy (Smith-Carrier and Lawlor, 2017; Jen-

nings and John, 2009), i.e. converting text to structured data. Studies almost uniformly consider

one group, or one issue, at a time (Mohammadi and Javadi, 2017). Meta-analysis of the kind that

would shed light on the driving questions of the discipline, across vast time, place, and volume

of discourse, has until only very recently been thought of as impossible. Over two decades, the

technology of Natural language processing (NLP) has enabled our ability to analyze and glean

insights from text at a much larger scale. The domain of human thought, previously accessible

to humans alone, is now something that computers can comprehend. Textual analysis, coding,

and classification tasks that would have taken humans weeks or months to complete can be

done by computers in minutes to a similar level of accuracy (Nelson et al., 2021). Visualizations

demonstrating the core arguments and conflicts within public discourse can be created automat-

ically, methodically and in real-time to give humanity quantitative insight into its evolving social

constructs and ideas.

Machine learning (ML) techniques have been shown to facilitate reliable and repeatable per-
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formance, and the validity of these approaches is equivalent to hand coded data from experts

(Nelson et al., 2021). Supervised models are able identify concepts that are nuanced, multidimen-

sional, and with varying temporal characteristics. While ML techniques are able to deliver domain

expert equivalent performance, the training and deployment of ML models is typically less re-

source intensive and more cost effective (Grimmer and Stewart, 2013). Further, these techniques

are also conducive to transferring across boundaries, and to re-usability. For instance, a model

trained on Australian news data to identify sociological patterns can be transferred with minimal

retraining to achieve the same objectives on speeches, or news data in the same language but a

wholly different context such as American media. The flexibility and reusability of ML models

derives from the modular and composable nature of ML pipelines (Zhou et al., 2017). Training

an ML model can be conceptualised as a multi-step pipeline, and the addition or change of a

step is designed to be as friction-free as possible. This enables rapid prototyping during initial

modelling efforts, and simplifies model updates post deployment.

While the application of ML in the sociological sciences holds a lot of promise, ML is relatively

under utilized in this domain. The rapidity of advances in ML and NLP1, and the complexities

in modelling methodologies such as frameworks to use, appropriate training corpora, common

pre-processing tasks, and types of models are all daunting challenges to wide adoption of these

techniques and can be perceived as barriers to entry that limit cross domain applications.

With this context in mind, this paper has three main aims. First, to introduce the reader to

the overwhelming area of artificial intelligence (AI), machine learning, and NLP. We aim to sketch

the questions, concerns, and contours of these technological landscapes, and by so doing, provide

both understanding and confidence to navigate the opportunities, terminology, methods, and

advances in AI/NLP towards the analysis of discourse at scale. Second, to provide throughout,

many examples of the application of AI/NLP to empirical social science research question that

serve to demonstrate that machines can augment our labour to reliably consider ‘text as data’.

1advances in ML and NLP – See for example, Grimmer and Stewart (2013)’s introduction to NLP in Political
Science, covering pre-embedding advances and methods, and for a more formal introduction to pre-transformer
methods, see Gentzkow et al. (2019)).
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And third, to emphasise the quantum leap in technological prowess now sweeping across all AI

research and application, namely, the transformer revolution. Transformer models are already

challenging notions of what has, until now, been considered ‘difficult’ for machine intelligence,

and have led to a burst of state of the art performance achievements. We contend that there is

much for the social sciences to gain by engaging with these new technologies, and for those who

are able to bridge between frontier empirical methods and the NLP/AI toolset, valuable insights

await.

What is AI, and How is it Applied in a Research Context?

What do we mean by ‘AI’?

Artificial Intelligence2 (AI) is a broad domain of knowledge, which provides many different ways

to solve the core problem of AI: How can a computer understand an environment, and predict

the environment’s future? Definitions of AI typically compare the behaviour or capabilities of an

AI system to that of a human, for example,

The term artificial intelligence denotes behaviour of a machine which, if

a human behaves in the same way, is considered intelligent. (Simmons and

Chappell, 1988)

However, behind such a seemingly obvious comparison is a hidden and vast cascade of sensing,

formulating, and decision-making steps. Humans undertake these processes subconsciously, but

artificial intelligence systems must be programmed, or trained, to master these autonomously.

Even as simple a task as ‘make a cup of coffee’ requires numerous components of intelligence to

solve including: recognising the existence of the task and its type, selecting actions and strate-

gising over their ordering, allocating attention, performance monitoring, responding to feedback

and course-correcting as appropriate, and then finally carrying out the task itself and learning

2Artificial Intelligence – The term ‘Artificial Intelligence’ was coined in the 1950s to describe work being
done at MIT and Stanford to create hardware and programs that might mimic human behaviour.
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from the experience (Sternberg, 1983). Indeed, the environments that AI systems navigate, and

the methods they use to navigate them, are varied in both complexity and effectiveness. For

example, a simple Chess AI can be considered to exist within the environment of a chessboard

and is attempting to predict what moves would most optimize its position on the board (and,

ultimately, deliver checkmate to the opponent). While the environment is simple in this case,

the methods used to compute actions within the environment may range from simple (like taking

any piece it can) to extremely complex (e.g. modern chess engines like Stockfish and AlphaZero

(Silver et al., 2017a)).

Of course, most useful AI environments are not as simple as a chessboard. AI systems

attempting to solve a Rubik’s Cube “with a robot hand” (Akkaya et al., 2019), play complex

games like Starcraft II (Vinyals et al., 2019), or drive a car (Bansal et al., 2018; Sun et al.,

2020) must make predictions in extremely complex environments, with many potential actions

and resulting environmental states. Sometimes the goal is to simply understand the environment,

rather than exert control over it. For example, topic modelling in Natural Language Processing

(NLP) seeks to identify key topics within a corpus3 of text. This can be viewed as an AI attempting

to understand and explain the environment consisting of the text in that corpus (which might

correspond to public discourse on a particular topic).

AI then, as a domain of knowledge, encompasses the ways computers can be programmed

in a way that facilitates prediction and decision making. This is not to say that the computer

is explicitly told what to do, although many AI systems are programmed this way. Modern AI

research mainly focuses on “machine learning”, where the computer learns to predict the future

state of an environment itself, as well as how its action will influence that future state.

3corpus – A collection of documents or texts, e.g. the corpus of books written by Australian author, Tim
Winton.
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Machine Learning

Machine learning4, a sub-field of AI, focuses on how computers can “learn” to make good pre-

dictions and decisions in their environment, without the decision-making methodology being

explicitly programmed into the machine. Instead, a learning methodology is programmed, and

the machine uses it to learn its decision-making methodology.

In machine learning, we generally train a model to make a prediction or judgement given a set

of input features. We then evaluate the model to determine how well its performance generalizes

to unseen inputs (since a model which only works on data it has seen before is usually not very

useful). We will discuss the components of training and evaluating a machine learning model, at

a high level.

Figure 1: Example AI Model application to inferring important entities from news articles. Here,
Australian newspapers form the environment or context for training (A), and must first be digitised then
processed to create features (B) that are passed, together with entity labels associated with each document (C)
to the AI model (D) for training. The trained model can then be applied to unseen newspapers (E) to provide
entities most likely to be found in the texts (F). Importantly, model inference can be applied with high efficiency,
at scale.

4Machine learning – ‘Machine learning’ was introduced by Arthur Samuel in a 1959 IBM paper which
described a program he had developed to play checkers, ‘better ... than can be played by the person who wrote
the program’. He noted, ‘The principles of machine learning verified by these experiments are, of course, applicable
to many other situations.’
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Fig. 1 provides an example of a text-based, AI model development sequence. Here, the

environment or context of the AI is newspaper text5 and the problem for the AI to solve is to

identify important entities, or labels, that are mentioned in a given article in the newspaper. The

AI Model must first be trained on a set of known “news articles – entity“ relationships, so that

it can accurately perform this task in a similar, previously unseen environment.

Models

Machine learning aims to solve the fundamental problem of AI, which is to understand an en-

vironment and make good decisions within it. Generally, machine learning accomplishes this by

developing models of the environment, which can make predictions about how a given action will

affect the state of the environment.

Models consist of some understanding of an environment. This understanding is generally for-

mulated through the ability to make predictions given a set of information about the environment

(called features, which are discussed in the next section).

Some machine learning models do not worry about making “actions” in an environment, and

instead, simply seek to understand the environment itself. For example, models can be trained

to identify digits from 0-9 given an image of a digit (LeCun et al., 1998), predict housing prices

in the Boston Housing Market (Harrison Jr and Rubinfeld, 1978), or classify the contents of an

image into one of several categories (such as t-shirts and pants) (Xiao et al., 2017).

Other models seek not just to understand the environment, but also to modify the environment

according to some objective. For example, a model such as AlphaZero (Silver et al., 2017a) seeks

to find the move most likely to lead to winning a game of chess, Go, or shogi. A model could

be trained to determine the safest way to proceed in a difficult traffic situation (Bansal et al.,

2018). The environments that can be understood and navigated by constructing models of them

are varied and limitless.

5newspaper text – recovering text from images of broadsheet newspapers is a common AI task and involves
a technique known as optical character recognition (OCR).
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Features and Labels

When starting with a new dataset from scratch, is not uncommon to have a lot of data in many

different forms. For example, a video streaming platform might have text comments, videos,

images and GIFs, etc., in many different formats. But computers, on a fundamental level, are

only able to deal with numbers. For this reason, we often need to take our data and transform

it into a set of features6 that a computer can understand.

These features are, in general, numerical. For example, one might take a set of images in

JPEG format and convert it to features by taking the raw greyscale pixel data and creating a grid

of values from 0-255. Or, given a set of sentences, one might transform them into vectors7 using

a technique called embedding8.

The most common task in machine learning is prediction, where we take a set of features and

attempt to predict an outcome or label. For example, given a sentence of text (or an embedded

representation of it), we might want to predict whether the sentence has a positive or negative

sentiment towards its topic. This is an example of classification9, where we wish to predict the

most likely class (or classes) that a given entity belongs to.

Alternatively, we might wish to predict the probability of rain tomorrow, given a set of features

related to the weather (such as humidity, cloud cover, etc.). This is known as a regression10

problem, as we are predicting a continuous label rather than a class label.

For machine learning problems with clearly defined labels, the training process seeks to opti-

mize the model’s ability to predict the correct label. However, in some machine learning problems,

there are no labels at all - only features. For example, when training a word embedding (which is

done using machine learning), there are no “labels” to predict - the task is simply to learn a vector

6features – in machine learning, a ‘feature’ of an input object is a quantitative representation of some aspect
of the object. ‘Feature engineering’ is then the task of generating the most useful features that distil the most
important aspects of input data for downstream tasks.

7vectors – A mathematical entity containing one or more numbers.
8embedding – A technique for converting words into vectors such that related words have vectors that are

closer together
9classification – the task of determining which class (or classes) an entity belongs to.

10regression – the task of determining a continuous number associated with an entity.
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representation of the words in the given vocabulary that ensure that similar words have vectors

that are closer together (in a mathematical sense). In these problems, we must use different

criteria while training the model (see discussion below on text embeddings).

Referring back to our leading example in Fig. 1, the newspaper text is first digitised, to obtain

features, which could include embedding vectors for words or sentences in each text. Then a

model is developed, that will take the features of each text as input, and classify each text as

having, or not having, a set of entities of interest.

The Training Process

Once a set of features has been established, it is time to use them to train a model. Different types

of models can have very different training algorithms. Some models, such as linear regression

models, can even be trained in multiple ways.

Modern models built on neural networks11 are almost always trained iteratively, through what

is essentially a process of trial and error. The model is shown some features from the training

set12, and then asked to either predict the label (for supervised learning13 problems) or otherwise

compute some value (for unsupervised learning problems). Then a metric is used to determine

how close the model was to the truth. This information can then be used to guide the process

of altering the model to be more accurate.

The simplest of training methods is to randomly permute the model, see if the model’s

performance improves, and keep the new version of the model if so. This evolutionary mechanism

of training can work and is relatively simple to implement. However, most machine learning models

use an algorithm called backwards propagation to make targeted changes to the model. At a

high level, backwards propagation allows the training process to determine where in a model

11neural networks – are stacked layers of computational units called neurons (inspired by the human nervous
system). The large number of neurons and interconnections between them enables the network to learn complex
features in the input data.

12training set – a subset of input objects represented by their features which may also have established, or
‘ground-truth’ labels already assigned.

13supervised learning – in machine learning, ‘supervision’ implies that known outcomes or labels exist for the
model to attempt to accurately predict, whereas ‘unsupervised’ implies the task is for the model to find patterns
in the data only.
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the mistake was made, and also gives an indication of how the model can be improved so this

mistake is not made again. This cycle of passing features into the model to make predictions

(sometimes called “forward propagation”) and tracing backwards to find the source of errors in

these predictions (“backwards propagation”) is the predominant method by which neural networks

“learn”.

Figure 2: Training machine learning models to ensure balanced fitting. Under-fitting occurs when the
model has not been given enough time to learn nuances in the data (A), whilst over-fitting occurs when the
model is trained for too long on the same data (C), balanced training sits between these poles (B).

As shown in Fig. 2, model training must balance competing priorities. On the one hand, the

model should develop sufficient accuracy on a given task so that it can demonstrate a minimum

level of accuracy on unseen data. On the other, the model should not mimic the training data

so rigidly that it learns idiosyncratic patterns, anomalies, or outliers, such that its predictions on

unseen data are increasingly inaccurate. In the language of machine learning, these two training

outcomes are called under-fitting (A) and over-fitting respectively (C). Balanced training sits

between these two extremes (B), such that the model can capture the most likely underlying or

general patterns of the data, without being swayed by anomalous labels or readings.

A standard training methodology in machine learning is thus to split a training corpus into

three parts (see Fig. 3): train, validate and test. The training data is used to train one or more

models, with the validation data being used to iteratively test the outcome of training. This

phase normally sees any hyper-parameters14 of a model tuned to the problem at hand. Finally,

14hyper-parameters – Training machine learning models is an objective search procedure. Each model has
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Figure 3: Model fitting, tuning and testing to compare the best model for the task. Balanced model
training is pursued by splitting a training labelled corpus (A) into a train, validation, and test set (B), with a
selection of models trained on the training data alone (C) and then validated (D) on the validation set to
identify optimal hyper-parameter values before final model performance is compared on the unseen test set (E).

the performance of one or more models is compared on a test data set which is unseen to all

models under consideration, and so gives a reasonable test of the trained model’s accuracy.

Capabilities of Machine Learning

As machine learning becomes more and more prevalent in society, misunderstandings regarding

what it can do are becoming more common. It is important to understand the capabilities that

AI provides, as well as its limitations.

Strong vs. Weak AI

The concern that researchers might “accidentally” stumble onto a General Artificial Intelligence15

seems to be prevalent in today’s society. It is therefore important to delineate between the two

major types of AI - “strong AI” and “weak AI” (Ashri, 2020).

A “Strong AI” is a system that is capable of performing many tasks, potentially including

problems it has never seen before, akin to living creatures with problem-solving capabilities. In

options and constraints that can be specified before learning begins. These are called ‘hyper-parameters’ and it
is good practice to test many combinations to find the best learning settings for the problem at hand.

15General Artificial Intelligence – A machine with (at least) similar capabilities to a human, which is capable
of performing general tasks just like a human can.
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Figure 4: Even powerful AI Models are Weak AI, failing on tasks that they have not explicitly been
trained on. Most AI Models in use today have been trained on a specific set of labelled training data (A), to
perform a specific task (B). When applied to unseen data (C), they perform well on the same task (D), poorly
or with confusion on even a related but different task (E), and typically cannot work with different data types
(F) and tasks (G).
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contrast, a “Weak AI” is a system that is capable of performing a specific task. For example,

AlphaZero by DeepMind16 (Silver et al., 2017a) is a Weak AI system that seeks to solve the

problem of chess (refer Fig. 4).

It would not be unreasonable to think that a “Strong AI” must be more powerful than a

“Weak AI”. From a certain perspective, this is true - Strong AI systems would be capable of

solving many problems, rather than just one. But this does not mean that Strong AI systems will

be better at a given task than a Weak AI trained on that task. For example, Weak AIs such as

IBM Deep Blue and DeepMind’s AlphaZero (Silver et al., 2017a) have been beating humans for

decades, despite our equivalence to a Strong AI.

Despite the common belief to the contrary, the vast majority of AI research focuses on de-

veloping and improving “Weak AI” techniques. In recent years, through the advent of transfer

learning17, the lines between Strong and Weak AI have become slightly blurred. However, in

general, Weak AI is in use today in a wide variety of applications while Strong AI is still in the

extremely early stages of development.

In light of this distinction, commonly held fears that a given Weak AI system might “become

sentient” are generally unfounded. This is not to say that ethical AI research is not important

- it is certainly important, and becoming increasingly so. But the particular fear that any given

AI system will “turn on humanity” is nonsensical, and serves to mask the real ethical questions

about the uses of AI in modern society.

Big Data

The term Big Data has become nearly synonymous with both Data Science and Machine Learning

in modern parlance. There is no settled definition of ‘Big Data’ though Laney’s “3 Vs” of ‘volume,

velocity, variety’ is often referred to. (De Mauro et al., 2016) provides a useful summary that

encompasses these ideas,

16DeepMind – A research organization, purchased by Google in 2014, who are “committed to solving intelli-
gence, to advance science and benefit humanity” (Deepmind, 2021).

17transfer learning – A technique where a model trained on one task is used to “jump-start” training on a
similar task.
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Big Data is the Information asset characterized by such a High Volume,

Velocity and Variety to require specific Technology and Analytical

Methods for its transformation into Value. (De Mauro et al., 2016)

Figure 5: Prominent Big Data terminology in research papers related to the topic. A word cloud
(fontsizes scaled to frequency of term use) compiled from abstracts related to Big Data in academic works.
Source: De Mauro et al. (2016)

Here, volume, velocity, and variety refer to the scale (huge size of digitised objects), speed (rate

of production and updating), and variety (structured, unstructured, and everything in between)

of data being generated in our digitised world, whilst technology and methods respectively refer

to the need for specialised out-of-memory18 processing techniques coupled with novel pattern

finding, model building, and statistical approaches that big data analysis requires.

Two newer dimensions have been added to this set - Variability and Value (Lee, 2017).

Variability refers to the importance of understanding the context of data collection. The dynamic

nature of data generation introduces variation in the data, and understanding the context of

generation enables ‘meaningful interpretation’ of the data. The ‘Value’ dimension refers to the

18out-of-memory – when a dataset is so large it cannot fit within a single computer’s working memory, it must
be processed with special methods ‘out-of-memory’ such as stream processing.
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valuable insights that can be gleaned from the data, and quantifies the cost-benefit trade-off of

data collection and expected value of such an investment.

Companies (especially tech companies) are racing to use the vast swathes of data at their

disposal to increase revenue. Governments are using their access to Big Data to analyze the

general population and perform monitoring and analysis which would be impossible to do manually.

Everyone seems to have more data than they know what to do with.

Machine learning works by training a model on a set of examples. In general, the more

examples are given to the model during training, the better that model will be. This is why

Big Data offers an enormous opportunity for highly accurate machine learning models. However,

training on these large datasets is non-trivial and can be orders of magnitude more difficult (and

costly) than training on the more traditional, smaller-sized datasets many of these techniques

were originally designed for. In particular, when datasets are so large that they cannot fit onto a

single computer, training gets complicated very quickly.

In recent years, much work has gone into making training these models on Big Data more

accessible. Machine learning libraries such as TensorFlow (Abadi et al., 2015) and PyTorch

(Paszke et al., 2019) have support for training across multiple nodes, and custom machine learning

accelerators such as graphics processing units (GPUs), and tensor processing units (TPUs)19

(Jouppi et al., 2017), are making these workflows more manageable. It is easier than ever to

work with Big Data, but there are still challenges and specialized knowledge is required.

However, it is widely believed that this effort will be worthwhile. Big Data, and the models

that have been trained on it, have already led to many unprecedented results and use cases.

Voice recognition that works for nearly any speaker, nearly all the time is made possible by the

large amounts of training audio organizations collect (sometimes by less ethical means) (Hern,

2019; Crist, 2019). Masses of data from millions and billions of kilometres driven on roads allow

organizations such as Waymo (Sun et al., 2020) and Tesla (Bellan and Alamalhodaei, 2021;

19(TPUs) – TPUs are an evolution from GPUs, with the T representing tensors, a fundamental building block
of Google’s TensorFlow framework. The TPUs are based on custom silicon chips designed for use in neural
networks modelling.
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Dickson, 2021) to develop self-driving car technology using machine learning. Language models

such as GPT-3 (Generative Pre-trained Transformer 3, see Transformer revolution below) (Brown

et al., 2020) demonstrate a real understanding of text, after being trained on masses of text from

the internet. The possibilities of Big Data are endless.

Limitations of AI Today

Weak AI research has reached a point of “critical mass”, where many tasks which were previously

considered nearly impossible for a computer to do are now being done on phones and smart-

watches. However, there are still things that AI struggles with. Generally, these correspond to

the kind of abstract thinking and ability to understand completely new situations that delineates

Weak AI from Strong AI systems.

Tasks that require creativity and/or abstract reasoning are typically the most difficult for AI

systems to master. While simple techniques are effective for statistical modelling (e.g. “how are

house prices affected by location, land size, etc.”), they fail to capture the most basic patterns of

abstract or creative thought (e.g. “draw a picture of a house”). This is often counter-intuitive

for humans - a small child could draw a picture of a house, but it requires a lot more knowledge

to understand housing prices and the things that affect them. However, finding correlations using

statistical analysis is simple for a computer because the problem can be converted into a form

the computer can “understand” (in this case, a regression problem).

In some sense, computers are quite capable of “drawing a house” (in that they can show a

JPEG of a house with little difficulty) - the difficulty comes in understanding what a house is,

and expressing this abstract notion creatively. However, as our machine learning models grow

more and more powerful, and new developments are made in the field of generative models20,

models such as DALL-E (Ramesh et al., 2021) are capable of performing “creative” tasks such

as drawing images given a prompt.

Tasks with a large search space21 are traditionally difficult for computers to master. For

20generative models – A model which is trained to generate outputs of a given type, such as pictures of cats.
21search space – Represents the number of potential world states, and actions, that a model can take - when
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example, it was long thought that an AI capable of playing Go at the level of the masters was

nigh impossible. Recent models such as AlphaGo (Silver et al., 2017b) (Go) and AlphaStar

(Vinyals et al., 2019) (StarCraft II) have demonstrated that modern neural network models can

be applied to these problems with incredibly large search spaces. However, these techniques are

still in relatively early development and require significant processing power.

Ethical AI

Debates regarding ethical AI development have gone back decades, and what was once limited

to the annals of Science Fiction is now becoming a very real problem.

Algorithmic Bias

The most prominent ethical issue with today’s Weak AI systems is the issue of algorithmic

bias (Lee et al., 2019). In the context of AI, algorithmic bias often occurs when a model is

incorrect in a systemic way - that is, it fails (or is less accurate) on certain classes of inputs.

Figure 6: AI Models “learn” biases from somewhere. Consider a training dataset being developed for a
classification task with four labelled classes, or outcomes (A). If the training data is biased by missing important
observations, the trained AI model will reproduce these biases in downstream tasks. In (B), an entire class
(crosses) is missing. In (C), crosses and some stars have been incorrectly labelled as circles. In both cases, the
model will “believe” the data we give it, leading to model bias.

Since models are trained, they must “learn” these biases from somewhere. The sources of

the model has many actions it can take, and/or there are many resulting world states from these actions, the
search space grows in size.
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bias, at a high level, can come from either an incomplete dataset that does not fully represent

the environment being modelled, or from incorrect labelling of examples (due to, for example,

pre-existing biases from the humans creating the training dataset) (see Fig. 6).

For example, consider the infamous story of how Google created an image classifier22 which

famously labelled a black couple as “gorillas” (which, aside from being incorrect, was a very

offensive mistake). One may reasonably ask: where did the model’s mistake originate? The

most likely solution is that black people were under-represented in the training set, and so the

classifier did not have enough knowledge about what images of a black person might look like.

Alternatively, perhaps some images of black people were incorrectly labelled, thereby teaching

the model falsely. The latter is less likely, but unfortunately cannot be ruled out as racial bias

undoubtedly exists.

It is also possible that the systemic error with the model was not limited to black people, but

rather was true for all people - as gorillas and humans are both bipedal creatures, this would not

a completely unreasonable mistake for a machine learning model to make (although it indicates

a deficiency in the model). In this case, for historical and social reasons, it makes sense that this

mistake would have come to light in the particularly egregious case of falsely classifying a black

person as a gorilla.

It is impossible to know what the cause of the bias was, although we would suggest that

insufficient training data is the most likely of the three causes discussed. Google solved the

problem by removing images of gorillas from its training set (Vincent, 2018), but surely a better

long-term solution would be to better teach the underlying model in the first place.

While the bias in the image classifier was egregious and offensive, the mistake was made in a

relatively inconsequential environment (image classification). However, the unfortunate reality is

that models that are used for extremely consequential decisions are also susceptible to significant

bias. For example, ProPublica famously analysed the COMPAS Recidivism Algorithm (Jeff et al.,

2016) and found that “black defendants were often predicted to be at a higher risk of recidivism

22image classifier – A model which takes an image as input and outputs the probability distribution of classes
that image might belong to (for example, “person”, “animal”, “car”, etc.).
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than they were”, while “white defendants were often predicted to be less risky than they were”.

These models, which are “increasingly being used in pretrial and sentencing”, clearly have systemic

and incorrect algorithmic biases.

In this case, the bias is certainly representative of the well-established systemic racial prejudice

within the US criminal justice system. While we cannot claim with certainty that this was the

whole cause of the error, it is reasonable to suggest that, at the very least, this was a significant

contributor.

The unfortunate reality is that the AI models of today are very good at learning from the

data we feed them, but they struggle with data they have never seen before. So if we feed them

incorrect data, or insufficient data, they will make mistakes. And these mistakes will often be

systemic, based on the classes of data that are mislabelled or under-represented in the training

set (refer Fig. 6).

However, the problem is not insurmountable. As society becomes more and more aware of

the dangers of bias, both in AI models and in general social discourse, steps are being taken to

mitigate this problem (Zhao et al., 2018). Public awareness of these biases is increasing, and

“implicit bias” training is now commonly used in many workplaces. Additionally, a significant

research effort is being undertaken to establish methods for finding and fixing such biases.

Such methods include evaluating the model for ’fairness and inclusion’, and not just model

performance (Brown et al., 2020). The pre-trained model’s outcomes are specifically assessed

using the data of underrepresented categories, and also assessed using text that can potentially

encode stereotypical biases towards gender, religion, race, nationality amongst others. The cat-

egories are then evaluated with a specific set of trigger words like {job, intelligence}, and this

evaluation can then be used to quantify stereotype bias of the model (Nadeem et al., 2020).

Bias evaluation in word and sentence embeddings are similarly evaluated using techniques such

as WEAT (Caliskan et al., 2017) and SEAT (May et al., 2019).

These techniques primarily rely on identifying the degree to which the pleasant and unpleasant

attributes vary over these categories. While evaluation helps in assessing the algorithmic bias
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of the models, measures that mitigate bias include specifically testing the model with under-

represented or smaller sample subgroups, and the use of adversarial learning23 (Zhang et al., 2018).

Adversarial learning employs a two-step approach where the first step is the standard modelling

and prediction, and the second step, another model acts as an adversary to the first model. The

adversary tries to identify the attribute that is sensitive to bias based on the predictions of the

model in the first step. The higher the bias, the easier it is for the adversary to identify the

bias-prone attribute, and this feedback loop is used to tune the primary model to ensure that the

adversary is not able to identify the bias-prone attribute. Thus the process generates unbiased

contextual embeddings.

Significant work is also being undertaken to improve explainability24 of AI systems, so we

can better understand why a model made a particular prediction (Tenney et al., 2020). This is,

of course, particularly important for machine learning models with significant real-world conse-

quences.

These methods for alleviating bias are not perfect, and likely will never be perfect. As in all

things, bias is and will remain a problem to overcome. But the battle is not hopeless, and rather

than ignoring this new technological frontier entirely, perhaps it is better to treat these systems

(and their predictions) with care, respect, and healthy scepticism.

Malicious Use of AI

The examples discussed so far have been unintentional misuses of AI - for example, nobody would

seriously argue that Google intended their machine learning model to demonstrate racial bias.

However, while machine learning and AI are being increasingly applied for tasks such as malware25

detection, identifying fake news and detecting botnets, similar approaches are pursued by bad ac-

23adversarial learning – an emerging technique in AI research whereby two models are trained simultaneously,
one trying to succeed on a task, the other trying to make that task harder.

24explainability – helps at interpreting the whys of the model results, often through visualisation, or creating
a simpler model to explain the decisions of the more complex model.

25malware – harmful software that is often spread from machine to machine without the user’s knowledge.
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tors to amplify their efforts. For example, a technique called adversarial machine learning26 allows

malicious actors to identify the correct combination of inputs that can cause wildly inaccurate

predictions in trained ML models (Wallace et al., 2019), and are gaining sophistication in making

such adversarial inputs humanly imperceptible from typical inputs (Boucher et al., 2021). These

adversarial models allow attackers to craft their artefacts to avoid detection methods, such as

crafting fake news in a manner that avoids fake news detection systems (Koenders et al., 2021).

As with any adversarial context, the detection and mitigation of malign AI is a necessarily

rapidly evolving area given the ‘arms race’ nature of the actors involved. Today, digital protection

from malicious actors is normally afforded by the rapid sharing of information between software

platforms of malicious code, and the publishing of “patches” as soon as these issues are identified

and fixed. However, as AI systems become more prevalent, these patches will not just address

errors in the “code” of a piece of software but will fix model errors as well by further training

models so they learn to not make a given mistake in the future.

Summary

We have discussed the core fundamentals of machine learning, as well as the challenges of training

effective models capable of generalizing to unseen data. We discussed how models are trained,

and the issues that can occur during training due to over- or under-fitting. We have seen how

“weak AI” is the most prevalent form of AI right now, and discussed why misconceptions and

fears about these weak AI systems are unfounded and serve to mask the very real, but more

subtle, ethical concerns that this new technology brings. As machine learning becomes more and

more powerful, ethical concerns become more important than ever - but we are hopeful that, like

the great technological advances that have come before, this new revolution will be a significant

net-positive for humanity.

One of the largest fields of research in machine learning, and AI more broadly, is the field of

26adversarial machine learning – A method for finding errors with a model, by using learning techniques to
learn the model’s shortcomings.
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Natural Language Processing. In this field, we apply a myriad of AI techniques to attempt to

parse, understand, transform, and even generate language. In the next section, we will discuss

some of these techniques, as well as their potential applications to the analysis of discourse.

What is NLP and How Has it Been Used to Analyse Dis-

course?

Humans, computers, symbols and computation

Humans have an intuitive understanding of natural language, that appears to transcend words,

structure, and even senses. Indeed, we appear to have an entire region of our brain dedicated to

understanding language (Musso et al., 2003). It is not a stretch by any means to say that the

ability to employ complex language is part of what makes us human.

Since language is the process by which humans communicate, it is clear that any machine

which is to interact with humanity must have some understanding of language, or at least em-

ploy it. This has been true since the beginning of computing, where “assemblers” take human

instructions and convert them to 0’s and 1’s that the computer can understand. Compilers take

“human-readable code” in languages such as C and convert them into 0’s and 1’s, saving them for

use by the computer later as a translator might translate a book from one language to another.

And interpreters take this human-readable code in languages such as Python, and convert them

to 0’s and 1’s as the program itself is running, akin to a translator translating a speech from one

language to another while it is being given.

It is also theoretically possible to take the 0’s and 1’s and convert them back into human-

readable code; this process is called decompilation (Cifuentes and Gough, 1995). However,

decompilation is generally considered to be a significantly harder problem than compilation. This

is because it is much less difficult to take human-readable code and translate it to 0’s and 1’s

that a computer can understand than it is to take the 0’s and 1’s and translate them into code
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a human can understand. It is worthwhile to explore why this is the case.

Human-readable programming languages, just like real languages, have structure and seman-

tics27 that a stream of numbers simply does not. The same statement, in two different contexts,

can mean two entirely different things, and vice versa. When converting a human-readable pro-

gramming language to machine code, we can hard-code the rules because we can limit the forms

of human-readable language we are willing to accept and the machine code is extremely rigid and

well-defined (essentially consisting of a list of instructions). We are programming knowledge of

machine code into the machine. But by programming a computer to translate from 0’s and 1’s to

a human-readable language, we are attempting to instil an understanding of that language into a

machine. The difficulty of this problem is the exact reason why understanding human language

is also very difficult for computers.

Real languages, even more than computer programming languages, are messy and ill-defined.

Any given language has its quirks and features, and no two languages are alike. Different languages

use different phonemes or do not use phonetics28 at all. Some languages are sensitive to inflection,

while others can be read in a monotone voice without losing most of its meaning. Some languages,

such as sign languages and Braille, employ senses such as sight and feel, rather than sight and

hearing. Truly understanding the complexities of these languages is possible for humans only

because we are hard-wired to understand language. The significant evolutionary benefits that

language entails has caused our brains to dedicate significant portions of themselves to language

understanding, even at the cost of other regions of the brain (Musso et al., 2003).

Given all these complexities, the question of why computers struggle to understand language

could easily be rephrased as asking how computers could ever possibly understand language. The

field of Natural Language Processing deals with this problem, and it has made great strides in

recent years.

27semantics – In linguistic theory, ‘semantics’ refers to the latent, or underlying meaning that one or more
words in a language signify.

28phonetics – Distinct sounds made while communicating are ‘phonemes‘ and together form ‘phonetics‘. e.g.
in English, ‘p’, ‘b’, ‘t’.
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What can be accomplished by NLP?

At a high level, Natural Language Processing encompasses a set of methods that can be employed

by computers to manipulate language and perform transformations on it. Because computers are

mathematical machines by nature, this necessarily employs somehow converting language from

words as we know them to a mathematical construct that a computer can understand (refer

Fig. 7). The exact mechanics of this are a significant focus within NLP research, and current

methods for it are discussed in detail below.

Figure 7: From text to data using NLP tools. Input text, such as Bob Hawke’s famous election speech (June
23, 1987) (A), must be converted into quantitative objects before downstream analysis can proceed. Words can
be converted to numeric tokens such that token frequencies can be computed across a series of texts,
highlighting unusual, meaningful words (B), or specific elements of a text’s syntatic structure can be obtained
by modern parsers such as the Berkeley Neural Parser (Stern et al., 2017) (C), or words can be located in a
geometric space via pre-trained word embeddings which encode latent semantic relationships within a language
(D).

Natural Language Processing can be employed to do a variety of useful and interesting trans-

formations on a textual dataset. It can identify topics in a set of documents and subsequently
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split the documents up by topic. It can identify whether a given tweet demonstrates a positive

or negative sentiment to a particular topic. It can identify named entities in a piece of text. And

it can do many other things as well.

All of these problems can be considered as requiring a transformation on some text29 or

corpus30. We might want to transform a set of documents into a set of topics, or a tweet into

a sentiment (positive/neutral/negative), or a piece of text into a list of named entities discussed

within the text. To have a computer accomplish these tasks, we must necessarily perform the

following steps:

1. Take the human-readable language and convert it into a form that the computer can

understand (the encoding problem);

2. Perform some transformation on the language while it is in machine-readable form; and

3. Convey the transformed result back to human users.

These three steps, and particularly the first two, encompass the major research goals of the

field of Natural Language Processing.

Figure 7 provides examples of core text encoding approaches used in NLP research. The

simplest and oldest approach is to convert each unique word into a unique integer, or token

(B), which leads to token frequency, occurrence and co-occurrence analysis. Indeed, a classic

(and still widely used) approach to encoding a text is to create a vector of token frequencies in

the text (tf), weighted by the inverse of each token frequency across all the documents in a

corpus (idf). The so-called tf-idf vectors so produced can then be compared and analysed by

computation). An example of this approach is found in Hager and Hilbig (2020) who exploited

exogenous variation in the timing of public opinion reports to German cabinet, to identify the

causal impact of the content of these reports on subsequent public political speeches (see Fig. 8).

Employing a regression discontinuity design they convert each report and speech into a 3,860

length tf-idf vector representation, and then compute the semantic distance between each report

29text – A single piece of written text, such as a news article, blog post, or tweet.
30corpus – A set of documents, usually with some theme or similarity. For example, a corpus might consist of

news articles from a particular publisher, or blog posts from a certain year.
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and speech vector via cosine similarity. Downstream regression analysis using the cosine similarity

measures as outcome variable demonstrates that political speeches made just after the report

releases are materially closer, in semantic distance, to the language of the public opinion report.

Alternatively, texts can be parsed for syntactic elements, such as via the Berkeley Neural

Parser (Stern et al., 2017). This enables researchers to zero in on a particular part of speech in

the text, such as the verbs, or nouns, or verb–noun pairs. The method’s main advantage is that

it identifies the semantic relationships between words in a text (eg. ‘Australian’ – ‘child’) rather

than treating the words as an unrelated bag of tokens or terms. Finally, semantic embedding

converts each word into a vector which locates the word in semantic space. The space is typically

pre-formed from unsupervised natural language models applied to billions of words of text in

online language databases (e.g. Wikipedia) or reviews. Together, these methods provide powerful

encoding options to researchers for downstream processing and analysis tasks.

Figure 8: Causal analysis of public opinion’s impact on political speech with TF-IDF vectors and cosine
similarity. In Hager and Hilbig (2020) a large corpus of German cabinet public opinion surveys were obtained
after release, and, together with political speeches, press releases and other announcements of cabinet members
(A), a regression discontinuity causal analysis framework was undertaken. After standard pre-processing, 3,860
length tf-idf vectors for each report and speech were calculated (B), enabling the calculation of semantic
similarity between each report—speech pair via cosine similarity (C).

26



Entity extraction

A standard transformation of text to data, is to identify and extract the named entities31, that

is, the entities which are considered to “exist”, and are referred to within the text. These may

include the names of people, groups of people, places, time, countries, and so on. Entity ex-

traction supports a variety of quantitative downstream tasks, including the calculation of entity

frequencies within documents or across the corpus, the partitioning of the corpus by sets of com-

mon entities, or more complex analysis based on entity–entity knowledge graphs. Unsurprisingly

entity extraction or recognition is a key task in NLP.

Consider the following piece of text,

The Red Cross and the Australian government were at the forefront of

the fight against malnutrition in underserved communities, in Pacific

islands. Dr. John Smith led the efforts on the ground, translating

their objectives into outcomes.

To a human reader, the entities in the above text are obvious: Red Cross (organisation);

Australian (country); Pacific islands (location); and John Smith (person). One simple solution

for entity recognition by NLP methods is to have a dictionary of known entities and look up each

word in that dictionary. However, there are several problems with this simple solution. First,

dictionary techniques are brittle to word-sense ambiguity, e.g. mentions of ‘Gates’ in a piece

of text may be missed as entities because most uses in English would refer to door-like gates

(i.e. ‘please leave the gates open’), not the philanthropists, Bill and Melinda Gates. Second,

dictionaries are typically static and built from common, or historical entities. This is a problem

for two reasons. First, slang, abbreviations, and compound letter-symbol entities are excluded

from dictionaries. Second, dictionaries, like maps and census data encode what ‘officially’ exists

at a point in time, and can be subject to definitional biases against certain cultures, peoples and

places.

A good Named Entity Recognition (NER) system should therefore have at least the following

31named entities – Words within the text which refer to one or more entities, such as a person, location,
organization object, etc. (Grishman and Sundheim, 1996).
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properties:

• Context-Aware: The recognizer can determine whether a potentially ambiguous phrase is

a named entity or not based on context.

• Capability of Inference: Even when looking at words or phrases it has never seen before,

the recognizer is capable of determining whether they are named entities using inference

based on context.

The Stanford NER system (part of Stanford’s CORE NLP library) (Finkel et al., 2005) uses

an approach based on conditional random field sequence models. Whilst powerful and widely

used, the model’s performance shows the strengths and weaknesses of such technology32. First,

applying the technique to the launching example above, we find,

The Red Cross[ORGANISATION] and the Australian[NATIONALITY] government

were at the forefront of the fight against malnutrition[CAUSE OF DEATH]

in underserved communities, in Pacific[LOCATION] is lands. Dr. John

Smith[PERSON] led the efforts on the ground, translating their objectives

into outcomes.

The system has extracted each entity we recognised earlier, in addition to ‘malnutrition’ as a

“cause of death”. However, in the following two examples limits are discovered due to the

unusual textual features,

Twitter was pivotal to these movements, with the hashtags #MeToo and #BLM

becoming rallying cries across the country.

Quill18 and Marbozir[PERSON] are both excellent YouTube channels.

The system does not identify the organisation ‘Twitter’ nor the prominent hash-tags, ‘MeToo’

and ‘BLM’. Likewise, whilst identifying ‘Marbozir’, although as a person, it is not able to handle

the alpha-numeric case ‘Quill18’.

Nevertheless, for most applications, these issues can be considered edge cases, and NER is

often the first NLP technique applied in the text to data pipeline.

32See https://corenlp.run/.
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Topics

After entity extraction, automatically identifying topics within a given corpus is often the next

most powerful technique for structuring textual inputs. With documents mapped to topics, any

downstream NLP task can be applied to a sub-set of the corpus by topic, or, the membership,

or probability of membership, of a given topic can be used as both a dependent or independent

variable.

Traditional approaches to the problem see a team of humans ‘coding’ documents to pre-

defined topics. Whilst this can seem attractive and rigorous, such methods are not data-driven33,

the researcher must pre-ordain the taxonomy to apply to the corpus, or iteratively develop this

taxonomy over multiple iterations. Automated topic discovery, on the other hand, seeks to dis-

cover clusters of related documents by their similar language features without human intervention.

One down-side of computational topic discovery is that a human is often tasked with labelling the

discovered topics after the fact, synthesising into a title, or phrase, the features that associate

with the topic.

Topic labels34 can be considered to be themes that emerge over a set of documents, or at

a more granular level, within different subsections of the document or even at a sentence level.

Consider the following two snippets:

While the urgency of humanitarian aid is driven by the goal of saving

lives, the ultimate long-term objective needs to be the resolution of the

problems that caused the need for such aid. The NGOs, therefore, need to

lobby for long-term, sustainable changes, and these changes are typically

best owned by the community that are impacted by the change.

The impact of the recession was most strongly felt by the younger

population preparing to enter the workforce. The drastic reduction in

long-term projects and hiring freezes resulted in closed doors to job

hunters. The ongoing economic cost of a generation of underemployed

citizens is something the country will have to pay for years to come.

33data-driven – an automated method is data-driven if it starts with no prior information about the dataset,
learning or discovering patterns autonomously as led ‘by the data’ without human intervention.

34Topic labels – Words that describe the themes found within a corpus.
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The two snippets each convey complex social phenomena, and a well-trained topic model

would identify groups of related words (under common themes) such as {humanitarian, lives,

NGOs, community} for the first snippet, {recession, population, freezes, underemployed} for the

next, clearly distinguishing topics such as ’community service’ and ’recession’. Identifying such

themes comes intuitively to the human reader, the field of topic labelling tackles the question of

how machines can identify these themes and topics within a given text. The topics discussed in

the corpus are typically latent (that is, not explicitly labelled, but present) in the body of the text,

i.e. the topics ’community service’ and ’recession’. The machine needs to discover this latent

information and assign the discovered topic metadata to the relevant snippets of the document.

Learning topics from an unlabelled corpus brings this task under the umbrella of unsupervised ML

techniques.

One of the ways the machine achieves this is by assuming that each bucket (topic) contains a

set of independent words, and a document is then formed by combining words drawn from various

different buckets (topics) with different probabilities. The machine then performs an optimization

over these topic-word-document assignments (or probabilities) and chooses the assignments with

the highest probability. This is called the ‘bag of words’ or Latent Dirichlet Allocation (LDA)

model (Jelodar et al., 2019). Thus, each document can contribute to a single topic, or multiple

topics, and there is no hard assignment of the document to an individual topic. This model,

however, ignores the concept of dependence between the words. A richer model would incorporate

contextual encoding, the correlation between topics and incorporate temporal evolution.

For example:

The introduction of the Apple iPhone signalled a seismic shift in mobile

devices, a market dominated by BlackBerry and Nokia. Smartphone vendors

scrambled to bring feature parity, with some succeeding in a few years

and others eventually relegated to obsolescence.
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The market for local fresh produce is enjoying a resurgence, driven by

the health- and environment-conscious demographic. Vendors have started

to import fruits such as apples, blackberries and mangoes to meet the

rising demand.

While the two snippets share multiple words and phrases, the topics identified by a good topic

model will be markedly different. The model might identify {apple, device, smartphone} in the

first snippet, and identify {health, apple, blackberries, mangoes} in the second. Here apple in

the context of 1st topic is a smart phone and in case of the 2nd topic, is a fruit.

More recent approaches employ neural topic models (NTM), which are neural networks with

encoder-decoder modules (Miao et al., 2015). The model is trained to represent the words in

the documents in a lower-dimensional representation (encoder), and to decode this information

back to the original form (decoder). This conversion to the lower-dimensional space ensures that

words that represent similar contextual meanings are combined in a natural way to represent

topics. Other variants of NTM enable the exploration of correlation between topics (Liu et al.,

2019a), hierarchical topic structures (Isonuma et al., 2020), and can be customised for shorter

texts (Zeng et al., 2018). Transformer based models such as BERT35 have also been applied in

topic modelling (see Transformer Revolution, below). The transformer models’ trained contextual

embeddings provide a richer basis for gleaning contextual information compared to a bag of words

or sequential modelling approach common in standard topic modelling. The use of clustering on

contextual embeddings from BERT representations like word or sentence embedding vectors have

been promising applications for topic modelling (Thompson and Mimno, 2020; Bianchi et al.,

2020).

More recent analyses in the social sciences have employed LDA techniques for mining large

bodies of text to analyse topics spanning various interests. Bonilla and Hyunjung Mo (Bonilla

and Mo, 2019) analyse newspaper data to identify the primary topics associated with human

35BERT – a ground-breaking transformer model, the Bidirectional Encoder Representations from Transformers,
or BERT, model is trained, via masking, on forward- and backwards- context to learn the deeper semantic
relationships in language.
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trafficking. They mine newspaper articles from 2000-2013 using LDA to understand public opinion

on human trafficking, and evaluate its influence towards supporting government policies. The

discovered topics are temporally analysed to better understand the evolution of focus in the

media discussions of each topic, such as foreign, immigration, sex, labor, and security. Another

interesting study by Vidgen and Yasseri (Vidgen and Yasseri, 2020) aimed to understand the

impact of petitioners in informing UK policies by identifying and studying the topics of petitions

raised between 2015-2017. The authors leveraged LDA to extract the words associated with

different topics (issues). The study utilized LDA’s parameterisation to identify the number of

topics, the topic distribution, and the word distribution over topics, and these were tuned using

5-fold cross validation. The extracted topics were evaluated for topic coherence using manual

overview. Further, a subset of sampled words from each topic was combined with a word that

was not representative of the chosen topic. A high accuracy in identifying the non-representative

word implied good topic convergence. Once the topics were identified, the authors analysed the

similarity between discovered topics (issues) using cosine similarity across the word distribution

assigned to these topics, and also studied the interest per topic over time. A similar technique

was employed by Goyal and Howlett (Goyal and Howlett, 2021) in understanding topic mixes

across different policy responses to COVID-19 by different nations over time. The most suitable

number of topics k was selected using domain expertise. Also the authors geo-mapped the topics

by associating the signature of each topic to its respective constituency. Clustering was then

applied on the percentage of signatures associated with the respective topics. This enabled them

to distinguish issues (topics) that are nation-wide or regional, and issues that are urban or rural.

Sentiment

Given a piece of text, we might want to determine the emotion or opinion that the text conveys

towards its topic. The opinion might be positive, negative, neutral, or somewhere in-between. For

example, one might wish to determine the sentiment towards particular politicians by analysing
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tweets that discuss these politicians. This may involve analysing sentiment36 at varying levels of

granularity, such as at the corpus level, text level, or even at a sentence level.

Classical sentiment analysis relied on hand-crafted, canned lists of words and phrases known as

lexicons for training the models (for example Lexicoder Sentiment Dictionary (Young and Soroka,

2012), VADER - Valence Aware Dictionary for Sentiment Reasoning (Hutto and Gilbert, 2014) or

crowd sourced dictionaries (Crowston et al., 2012)). While lexicons have been reasonably effective,

their preparatory nature makes them ill-suited to mining dynamic and complex topics and are

limited to the primary domain in which dictionaries were created (Grimmer and Stewart, 2013;

Nelson et al., 2021). Techniques in sentiment analysis have evolved using supervised learning

techniques for automatic extraction of positive, negative and neutral sentiments. Advanced

sentiment analysis would extend the identification of sentiments from beyond the simplification

of positive, negative and neutral options into the underlying range of taxonomy of emotions like

sadness, joy, admiration, approval, gratitude, love, disappointment etc. (Demszky et al., 2020).

A good model would be able to derive the complex emotions that the text conveys, or better yet,

emotions that the text evokes in the reader (such as empathy or distress).

Document-level summarisation of sentiments can be challenging in documents with nuance,

multiple perspectives, or when the expression of opinions is muted (Hussein, 2018). For example,

consider the short document below.

The administration publicly championed a reduction in emissions and

signalled an aggressive agenda in pursuit of the Paris Accord goals.

The policy record, however, depicts a continuum of the 90s agenda.

The creation of the environment czar position is a step in the right

direction, albeit the choice of personnel remains questionable at best.

This document conveys scepticism of an administration’s policy, but the muted and spare tone

makes automated detection of this negative emotion more difficult. Social media text on the other

hand requires an understanding of conventions specific to the community (such as threads on

Twitter), and incorporating these implicit structures into the analysis, as well as factoring in the

36sentiment – A measure of the emotion expressed within a text or corpus towards a particular topic.
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natural diversity of opinions and topics in a broad forum implicit in the ’social’ of social media.

A different dimension to the analysis is the identification of the aspect that is the subject of

the sentiment or opinion (in the above example, the administration’s approach to environmental

policy is the aspect, and scepticism is the sentiment). A more complex document might contain

multiple aspects, as well as different opinions or sentiments on each aspect. Aspect based

sentiment analysis (ABSA) focuses on the identification of sentiment polarity for a particular

aspect of the given sentence (Hu et al., 2019). Consider a statement such as

Mark is decidedly against gun control, while Richard is open to stronger

background checks and ammunition controls despite being a life-long

card-carrying Republican
.

Here, the aspect is gun control, and Mark has a negative sentiment about this aspect, while

Richard is positive. Further, sentiments are attached to topics and phrases and are contextual in

nature (Choi et al., 2017), such as the positive and negative sentiments emphasized by the same

word ’big’ conveyed in the two sentences given below.

The company made big gains in the last quarter.

The company is in big trouble.

Recent advances in sentiment analysis models explore sentiment aware word embeddings (Yu

et al., 2018), and causal reasoning (Poria et al., 2021) such as understanding the why or the

cause of the sentiment in addition to the traditional who and what of the sentiment.

The capabilities of NLP in surfacing sentiments and its usage as part of a broader analysis

workflow is demonstrated in a study of opinion forming by Iacomini et al. (Iacomini and Vellucci,

2021). The study analyses opinion dynamics in a group of interacting agents, with a particu-

lar focus on contrarian agents, and traces the opinion dynamics of climate change with Greta

Thunberg’s polarizing effect on the debates as the motivating example. The authors hypothe-

sized that the very low vote share percentage of the Green Party (with climate change as the

major policy plank) in the Italian elections indicated that a segment of the Italian population

were climate change contrarians. The authors tested this hypothesis through sentiment analysis
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of Italian tweets concerning Greta Thunberg over a 15 month time period. The analysis used a

two pronged approach - first, they applied a BERT model trained on Italian tweets and used it

to identify the overall sentiment of each tweet in their data set (a binary representation: positive

or negative). Next, they implemented an augmented dictionary lookup for associating a polarity

score to each tweet. This was implemented through a custom sentiment dictionary that mapped

Italian word to polarity score, followed by transforming the score to account for valence shifters in

the tweet (such as negators, intensifiers and down-toners). The final data set of tweets was then

composed from the tweets for which the sentiment identified by the BERT model and polarity

score computed by the lookup both matched. The polarity distribution of this data set validated

their initial hypothesis by demonstrating that the majority of tweets on the topic of Greta Thun-

berg were of negative sentiment. From an application of NLP perspective, this paper highlights

the transferability of NLP techniques across language and cultural boundaries.

Parts of Speech

Not all words are the same. From an early age, language learners are taught about verbs,

nouns, adjectives, adverbs, and other components of speech. This matters because meaning

is built up from relationships between words, given their grammatical function. Moving words

around, or even punctuation, can change the meaning dramatically. NLP handles this problem by

automatically identifying the correct part of speech37 (POS) for one or more words, usually in the

context of a piece of text. As with other methods, simple approaches rely on lexicons to associate

POS with a given word. However, this method is not entirely robust to contextual modifications

to word function and grammatical nuance. For example, consider the example below.

The climate change activists in Australia are echoing the message of

Greta Thunberg, and have adopted her recommendations in their message to

the government.

37part of speech – The class of word that a given word belongs to, in the sense that it is being used in the
current text. For example, the word “find” can be both a verb (“I will find you“) or a noun (“It was a nice find”)
depending on context.
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For a proficient English speaker, this question is trivial. The ‘recommendations’ in question

are those of the ‘Greta Thunberg’ (her) of the opening phrase, and not the ‘activists’ (their).

But for NLP this level of understanding is non-trivial. However, recent technology in this area

has been highly successful in breaking down text into sub-phrases, or constituents, to build a

relational tree of any sentence, correctly identifying parts of speech in their wider context. The

Berkeley Neural Parser (Kitaev et al., 2018) employs BERT transformer technology (see the

Transformer Revolution, below) to build a context-sensitive map of the sentence structure and

parts of speech. This can be used to associate verbs or adjectives with their corresponding nouns,

among a myriad of other uses. A particular kind of POS methodology is ‘co-reference resolution’.

For a quantitative scientist, it may be necessary not only to find all the mentions of a particular

figure in the text, but also the co-references to that figure – when the name is substituted for

‘he’ or ‘she’ accordingly. In co-reference resolution, the machine first identifies all the mentions

(entities, pronouns, noun etc.) in a given statement, and then clusters the mentions to identify

those that belong to the same entity. An example of the NueralCoref parser (Clark and Manning,

2016a,b) is presented in Figure 9 below.

Semantic Dimensions

‘Class’ is a divisive term. How we think about class, the words we associate with class, are heavily

loaded with notions of affluence, education, gender, status and society. But can ‘class’ and its

associations be measured and tracked through the corpus of human writing? This question is an

example from a class of quantitative social science problems related to semantic dimensionality.

The idea being that texts can align strongly for or against a latent semantic concept.

In a ground-breaking contribution, (Kozlowski et al., 2019) leverage the rich-semantic space

of word-embeddings38 to explore notions of class through 100 years of human publishing. Their

central idea is to carefully craft semantic dimensions within high-dimensional word-embedding

space, by locating clusters of antonym pairs in that space and effectively measuring all other

38word-embeddings – A mapping from a word to a vector in a (potentially high-dimensional) vector space.
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Figure 9: Getting the right ‘he’ and ‘she’. Co-reference parsing with NeuralCoref. For a human,
identifying the entity implied by a given pronoun is a basic capability relying on human contextual understanding
of language. For a computer, this is a non-trivial problem. The NueralCoref parser (Clark and Manning,
2016a,b) applies deep learning to the problem with state-of-the-art performance. An input text (A) is parsed for
its entities, and pronomial references, with scores indicating the most likely connections between them for
downstream processing (B). See: https://huggingface.co/coref/

words and concepts against that new dimension. If a word-embedding was a (two-dimensional)

map of South-Eastern Australia, instead of asking how ‘north’ Bathurst is [relative to ‘south’]

(the standard dimensions of the map), a new dimension could be drawn between Melbourne and

Sydney, enabling the new question, ‘how Sydney is Bathurst relative to Melbourne?’. This trick

gives rich interpretable notions of class in latent semantic space. The technique is applicable to

any antonym-like dimension in semantic space that can be crafted for a given research question,

e.g. gender (man–woman), affluence (rich–poor), or age (youth–aged).

As shown in Fig. 10, by training a word-embedding specifically on texts from a certain decade

only, the embedding was able to capture the semantic relationships between terms, enabling the

formation of various dimensions, such as ‘affluence’ (‘rich’ – ‘poor’), or ‘gender’ (‘feminine’ –

‘masculine’) dimensions. These dimensions then become effective semantic ‘rulers’ by which to

measure the relationship in meaning between notions of class, such as education, cultivation,

status, morality, employment, and gender with the dimension of focus. One of their key findings

was that education went from being semantically unrelated to affluence around the turn of the
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Figure 10: Measuring notions of class in millions of digitised Google books through nine decades. First,
the Google Books n-gram library (US texts only) are used, a decade at a time (A), to train a decadal
word-embedding (B). Next, semantic dimensions or geometries of culture are formed by marking lines between
clusters of antonym pairs in rich, high-dimensional semantic space (C). Finally, these new dimensions, like
‘Affluence’ are used to measure how aligned or misaligned certain correlates of affluence have been over the
years (D).
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20th century, but by its end, was the primary correlate (in digitised books).

“Narratives” – can they be analysed at scale?

What is a narrative?

Although narratives have been studied in many branches of social science for decades, recent

attention has been drawn to their potential to drive major social and economic outcomes (Shiller,

2019). But what is a narrative, and how does it differ from a topic, theme or sentiment of a

text? The Oxford Dictionary gives a helpful distinction:

narrative -- a spoken or written account of connected events; a story.

-- Oxford Dictionary

In short, connections matter to a narrative. We might recast the Oxford definition in slightly

more general terms as follows, a narrative is, “a connected account of people, places and events.”

So we might say that a narrative is defined over a set of entities, E, which exist in a connected

semantic structure, or relational graph39, G(E,R) where E are the set of entities, and R are their

pairwise relationships, with some relational operator (e.g. a verb), connecting entities together.

Suppose that E was defined by {Alex, fish, ball}, then we could parse the story or narrative,

‘Alex ate some fish, and then caught the ball’ by noting that ‘Alex’ ate (relational verb 1) ‘fish’,

(and then) ‘Alex’ caught (relational verb 2) ‘the ball’. Whilst this might sound abstract, it gives us

the minimal amount of formalism, to now write, Alex → ate → fish and Alex → caught → ball.

One can readily see that with a sufficiently large set of entities, and relationships between

them, ‘micro-narratives’, formed by a simple tuple (entity – relationship – entity) can be built into

a complex, macro-narrative structure, or ‘grand narrative’ that ties together all of the narrative

relationships between the entities, either at one time or even across time. This connected feature

of narratives distinguishes narrative analysis from keyword, sentiment, topic or semantic geometric

analysis.

39relational graph – a ‘graph’ or network of entities connected by edges, or links, indicating relationships
between entities. For example, a social network of friends is a relational graph.
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Figure 11: distilling reduced-form, ‘micro-narratives’ from US Congress speeches, 1994-2015. In the
approach of Ash et al. (2021) et al., texts (A) are first parsed by a role labelling method, to obtain parts of
speech and their relationships, particularly around verbs (B). Then, to reduce the set of entities being tracked,
each instance of an idea or concept is mapped to one semantic cluster, such as words and phrases for ‘family’
(C). Micro-narrative tuples can then be identified, measured and analysed, for example, the most divisive
narratives between Democrats and Republicans (D), or the frequency of narratives related to ‘Saddam Hussein’
around the time of the Iraq invasion (E).
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The challenge, then, for NLP narrative analysis, is to develop some method that can identify

both useful entities, and the accurate depiction of the most common, or most meaningful rela-

tionships between them (be they verbs or other), and so condense the narrative structure of a

text or corpus into a quantifiable, narrative object for further study and analysis.

Advances in Micro- and Grand- Narrative Analysis

Very recently, there have been some inspiring approaches to ‘micro-narrative’ identification. One

such approach, in the social sciences, is that of (Ash et al., 2021) who approach the problem

with a classic divide-and-conquer strategy by first identifying roles and verb relationship in parts

of speech, before obtaining a manageable set of entities through dimension reduction, and then

uncovering entity to entity relationships to define R. The first is achieved by text parsing to

obtain ‘entity–verb–entity’ micro-narratives from sentences. The second step is conducted by

latent semantic unsupervised clustering – taking thousands of entities into embedding space,

identifying a constrained set of k clusters, and so collapsing all entities down to their nearest

cluster centroid. G is then built by obtaining the most frequent micro-narratives and creating a

connected graph structure for further analysis (see Fig. 11).

Ash et al.’s approach is quite reductionist, both because of dimension reduction and because

of micro-narrative–led discovery then re-composition. The outcome of this analysis is ideal for

counting up frequencies of micro-narratives over time, or from a given party, but the micro-

narratives are themselves relatively low on semantic richness. There is a trade-off at play here:

narratives must be simplified to undertake counting and quantitative analysis, but they must not

be so simple that they lose their meaning.

An earlier but no less illuminating approach to grand-narrative analysis, with a particular em-

phasis on narratives which unfold over time, is that of (Shahaf et al., 2015) and their ‘Metro-maps’

methodology (see Fig. 12). They formalise the problem in linear programming terms (Shahaf

et al., 2013), requiring that a ‘solution’ to the metro-line visualisation of a set of related articles

should provide high coverage (i.e. it should handle many different, relevant threads) and high
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Figure 12: Conceptualising the flow of news as a metro train network. Important words are identified
which mark out different ‘lines’ in the news, here, alternative views of the events (A), ‘stops’ represent clusters
of articles which depict a key movement in the narrative (B) and are connected by their respective event lines
(C). Interestingly, narrative lines can converge (D) or diverge (E) as the narrative sequence unfolds.

42



quality (i.e. lines should be long, and complex if the subject matter requires). Together, their

method proceeds in a hierarchical solution algorithm, identifying clusters of words, then clusters

of articles, then connections between clusters that best satisfy their measures of coverage and

quality.

The method is most suited to episodic narrative analysis, where temporal shifts over a rela-

tively short period of time (weeks, months) are important to tracking the narrative’s evolution.

Particularly interesting applications include the evolution of a part of the computer science liter-

ature, and the evolution of legal arguments in Congressional debate.

Summary

We have discussed several of the core methods used in Natural Language Processing to analyze

text and glean insights from it. Some methods attempt to understand the meaning “behind”

text, providing tools capable of determining the sentiment towards a given topic, disambiguating

between different word senses, or identifying parts of speech in a piece of text. Others allow us

to distil knowledge from a corpus of text, finding topics and narratives within it, or identifying

semantic dimensions within the text. And others still facilitate visualization of text - words can

be plotted according to their embeddings, or their place along one or more semantic dimensions,

and “metro-maps” can be used to demonstrate the progression of narratives over time in a corpus

of text.

These methods are effective and powerful tools, but NLP is growing in power extremely

quickly. New technologies such as transformers, substantial increases in computational power,

and new techniques for training large models across multiple machines allow for ever more complex

models. NLP technology has made great strides in the past few years, and progress is not slowing.
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The Future: Emerging NLP Technologies and the Trans-

former Revolution

Language Models

The central problem of NLP is somehow making a computer demonstrate an ”understanding” of

natural language. One popular method for this is the language model. A language model is a

statistical model that predicts the next word in a sequence of words (or, alternatively, fills in a

blank word in a sequence of words - not necessarily the next word in the sequence). The goal

is to develop a model which can predict words given their context, with the ultimate hope that

such a model can only truly be successful if it has an understanding of the language itself. It

is not immediately obvious that this must be true, but experimental results have demonstrated

that language models can be extremely successful at a variety of tasks related to parsing and

understanding language such as query suggestions in searches, machine translation, summarising

text, tagging, named entity recognition, and sentence classification, amongst others (Manning,

2021).

Language models estimate the probability of words in a sentence, given their context. For

example, a language model might predict that the sentence fragment

The MacBook is an apple

ends with ‘laptop’, or ‘computer’, but would not predict ‘juice’.

As another example, in the following sentence

Proactive governmental intervention has had a impact

the language model might predict the blank word as ‘positive ’, or ‘negative ’, but would

(hopefully) not predict ‘banana ’.

Simple language models have existed in the literature for decades (Jurafsky and Martin, 2018),
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but it is only recently that they have become powerful enough to be relied upon in practical use.

Older models were based on n-grams40, but these models struggle with creating long, cohesive

pieces of writing. For example, consider this piece of writing, generated by a model based on

4-grams from Shakespeare’s writing:

King Henry. What! I will go seek the traitor Gloucester.

Exeunt some of the watch. A great banquet serv’d in;

- 4-gram model, in the style of Shakespeare (Jurafsky and Martin, 2018)

This is a valid piece of English text, but it is nonsensical. This is because n-gram models are

unable to capture long-term dependencies or information in a piece of text.

Compare this to a piece of text generated by the generative transformer model, “davinci-

instruct”41 GPT-3 (Brown et al., 2020), with the prompt/instruction, “Generate a paragraph of

text in the style of Shakespeare”:

Upon the heath, in the cold and frosty night,

the sad and weary traveller might have seen

By the dim light of the moon, the form of a man

Who, with head uncovered, knelt on the ground,

And, with upraised hands, seemed to give his prayer

- GPT-3, in the style of Shakespeare

This is much better - the model is able to capture long-term dependencies. It still is not

perfect (for example, it is not written in Shakespeare’s typical iambic pentameter), but it is

a marked improvement. Transformer models such as GPT-3 are able to capture this context-

sensitive information to a level that no previous technique could hope to match, because they

are designed in a way that facilitates long-term dependencies. For example, the phrase “give his

prayer” is referring to the “form of a man” referred to over a dozen words earlier in the text -

this is simply not feasible with simpler language models such as n-gram models. What exactly

drives this design, or architecture, is the focus of the following sections.

40n-grams – A sequence of n items (in this case, words) - for example, “the quick brown” is a 3-gram and
“the quick brown fox jumped” is a 5-gram.

41Note that davinci-instruct is a fine-tuned version of the original davinci model, which is trained to complete
language tasks given an instruction.
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Transformers, BERT, GPT-3, and Beyond

In a land-mark, and now famous paper from Google Brain, ‘Attention is all you need’ (Vaswani

et al., 2017) a new kind of neural architecture42 based heavily on ‘self-attention’ was introduced

and demonstrated immediate state-of-the-art performance with relatively little training on com-

plex language tasks. The key idea being that, instead of using larger and larger layers to represent

an input sequence of textual information, so as to encode longer memory, the paper used many

smaller, parallel self-attention layers at various points, to represent multiple semantic relationships

that occur across a sequence of text. Indeed, their initial results showed how different attention

layers had learned different attention maps, conferring a depth in language understanding well

beyond the prior state of the art (see Fig. 13). And, what is perhaps now synonymous with

transformer technology, the model exploits positional embeddings, alongside its self-attention

layers. Positional embeddings provide information to the inner layers of the model as to the word

or token ordering of the input sequence.

Taken together, self-attention and positional embeddings allow these Transformer models to

attain a rich contextual understanding of a given word, or sentence, or paragraph. This approach is

fundamentally different to prior word-based embeddings such as word2vec (Mikolov et al., 2013)

or GloVe (Pennington et al., 2014) which learn a single weighted (by training corpus) average

semantic representation for a word across its uses. Despite being in their infancy, Transformer-

based NLP models have routinely demonstrated state-of-the-art performance in a wide variety of

NLP tasks, including text classification Devlin et al. (2018), sentiment analysis Xu et al. (2019);

Sun et al. (2019), and topic modelling Grootendorst (2020). Techniques such as hyperparameter

tuning Liu et al. (2019b) and knowledge distillation Sanh et al. (2020) continue to improve both

the performance and compute-performance ratio of Transformer-based models. And by leveraging

their internal text embeddings, Transformer models can also be used to generate high quality,

42architecture – Some houses have a few more windows, an extra bedroom, a garage, etc., but a house is
a fundamentally different solution to the problem of “creating a living space” to, say, an apartment. Similarly,
architectures are different ways to make machine learning models - such as dense neural networks, generative
adversarial networks, transformers, etc.

46



context-aware embeddings of sentences Reimers and Gurevych (2019) - in this way, the power of

Transformer models can be used to improve the performance of older NLP techniques which rely

on text embeddings.

Transformers then, mark a fundamental turning point in computational language represen-

tation: from words to sentences and paragraphs; from local and fixed, to broad and responsive

semantic contextual representation. Fortunately, for quantitative scientists, Transformers can

provide identical vector objects to represent texts to previous methods NLP (e.g. via tf-idf or

word2vec), and so can be substituted for any prior vector-based similarity, regression or classifi-

cation task43. Transformers also use parallel computation, yielding great improvement in effective

computational power44 in comparison to their predecessors (Vaswani et al., 2017).

BERT (Devlin et al., 2018) is an interpretative model the uses the full power of multi-layer

transformer models to perform analysis tasks on text. BERT (and the various models spawned

from it) are trained to predict a missing word in a piece of text, based on the surrounding context.

The hope is that any model which can successfully do this must have a deep understanding of

natural language - experimental results have demonstrated this to be the case. Generally, a BERT

model is first pre-trained on a large body of text to build up a representation of the meaning of

the text within its transformer layers. Additional neural layers are then added to the model to

perform an analysis task. These additional layers are placed on top of the BERT model (often

called a “head”) and allow the knowledge of the language model to be expressed in whichever

form is required for the task at hand (such as sentiment prediction, NER, classification, etc.).

GPT-3 (Brown et al., 2020) is a generative model using the full power of multi-layer trans-

former models for sequence prediction. It is trained to predict the next word in a sequence given

the previous words - this process can be iterated to generate a piece of text. Models like GPT-3

are generally trained on a massive corpus of data, and training them generally requires a level of

43Note, each Transformer model typically provides specific techniques for resolving representational embeddings
into a given outcome, such as an embedding vector, outcome class, or regression estimate and these methods are
strongly advised over simply ‘reading off’ the final embedding layer.

44computational power – The amount of processing power available for a particular task. Many machine
learning methods, and especially techniques based on neural networks, require significant computational power.
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Key Elements of Transformer Architecture
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E Example Attention applied to a single word

The self-attention 
of two attention 
heads (layers) for 
the word  “its” is 
shown, one head 
(brown) gives 
attention to “Law” 
and “application”, 
whilst the other 
(purple) gives 
attention wholly 
to “Law”. 

Here self-
attention of all 8  
attention heads 
(layers) for the 
word  “making” is 
shown 
(represented by 
different colours). 
Whilst “more” and 
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most attention, 
some layers also 
focus on “2009” 
and “making” 
itself.

Head 1

Head 2

Figure 13: ‘Attention is all you need’ - Transformer architecture emphasises self-attention, the ability
for the model to keep track of multiple semantic concepts and relationships at once. Transformer
models are ‘text to text’ or ‘sequence to sequence’ neural models, they accept an input sequence of text (A)
(e.g. a sentence) and can output the same (D), e.g. a translation, or the input sentence annotated with entity
information or POS. In between, a series of self-attention layers encode (B), manipulate, and then decode (C)
the state representations of the model into useful outputs. Examples of single word attention layers, or heads, in
action (E), are taken from Vaswani et al. (2017).
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Figure 14: Foundation models will become the standard for abstract text analysis at scale. The
digitisation of society (and its history) has lead to the extraordinary amounts of data (A) that can be used to
train (B) deep, millions of parameter neural architecture models known as ‘Foundation models’ (C). Whilst still
in the realm of ‘weak AI’ foundation models can then be fine-tuned or adapted (D) to perform a very wide range
of complex, abstract language tasks (E). (Adapted from Fig. 2 in Bommasani et al. (2021))

computation akin to a supercomputer.

The sheer scale of a model such as GPT-3 allows increasingly abstract concepts to be extracted

from the training corpus; this is useful in generating coherent and logically sound text. The

predominant approach has been the training of a language model on very large data sets to learn

rich contextual embeddings. These pre-trained models are then widely used through fine-tuning45

for different domains and tasks - such a model is sometimes called a foundation model.46

45fine-tuning – Fine-tuning, or ‘adaptation’ takes a large, pre-trained, language model, and then undertakes
further training on a specific corpus, or task, under study. This final step leverages the general language knowledge
of the model, to quickly learn specific task-based knowledge required to perform with high accuracy.

46foundation model. – A model which is trained on a broad dataset, and can be later adapted to specific
tasks (Bommasani et al., 2021).
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These current models are already extremely powerful, but larger models trained on more data

are surely coming. These models will demonstrate their ever stronger understanding of natural

language, and if the past is any guide, will make the current models look relatively unintelligent in

short order. Advances in the amount of data provided to these models, the amount of computation

available to train them, and the number of parameters in these models, will lead to ever-larger and

more competent models. It is even possible that the current Transformer-based architectures are

capable of scaling to the point where they might be considered an intelligent, “strong AI” in their

own right, but this is not yet well understood. In any case, if there is a point at which increasing

the scale of a Transformer-based model yields diminishing returns, we do not yet appear to have

reached it.

Few-Shot Learning

Few-shot learning is a technique of providing only a few examples of data during model training.

Typically, data scientists attempt to provide a wide variety and volume of training data, but such

diversity and scale of data are not always available and the data collection procedures may be

expensive. An example of this would be labelled data of sentiment classification. In few-shot

learning, pre-trained models are provided with a dataset and a few example outcomes. The model

learns the task by mapping the example outcomes to the training data set and is then able to

generalise enough to provide the outcomes for all other records in the data set. The model does

not train (update its contextual embeddings) during this process. Thus, it makes it easier to

apply ML techniques to different NLP tasks.

For example, if the task is question/answer and you have a large input data of only questions:

you provide the model with a few examples containing pairs of sentences as question/answers

and the model learns the task required, being to answer questions in the input data, and then

proceeds to predict the answers for the rest of the input data.
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QA1: What is the capital of Australia? Answer: Canberra

QA2: Which country is known as the gift of the Nile? Answer: Egypt

QA3: What is the currency of Japan? Answer:

Language models such as GPT-3 have the potential to be excellent models in few-shot learning

problems because they have an inherent knowledge of the context around their input (in this case,

text) even before seeing a single example of what we want to learn. This is because these models

are trained on very large corpora of data (on the scale of petabytes) and have absorbed a great

amount of context due to expansive model architecture. For example, GPT-3 correctly predicts

the word “Yen” as the next word in the above sequence.

As another example, when asked to “Generate a sentence describing a disadvantaged person’s

struggles in Australia”, GPT-3’s “davinci-instruct47” model generated these sentences:

The disadvantaged in Australia often struggle to find the basic

necessities. -- GPT-3

Many disadvantaged people in Australia experience health, social, and

economic disparities. -- GPT-3

The disadvantage person is living in the streets and they are struggling

to survive. -- GPT-3

Discourse Analysis with Transformers

Already, we have seen how Transformer models (like BERT) can be utilised to achieve a series

of NLP tasks of interest to the quantitative social science such as topic modelling, sentiment

analysis, and more. Here we will present some examples of how discourse analysis can be acceler-

47davinci-instruct – OpenAI provide a variety of base transformer models, each model is derived from the
GPT-3, and then, with additional training, develops strong capabilities at certain tasks. the ‘davinci-instruct’
variant is the most capable model for following open-ended instructions.
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ated using state-of-the-art Transformer technology (in this case, the GPT-3 model by OpenAI48

(Brown et al., 2020)). Transformer-based models are very powerful, but they also have signifi-

cant computational requirements. In general, Transformers are good at solving abstract language

problems with little training data (i.e. few-shot learning), but scaling the technology to larger

models and workloads is currently proving costly.

We will demonstrate an example of how Transformers can be used as a complete model

on their own, to simplify political speech. We will also see a more “hybrid” approach, where

simpler (and computationally cheaper) NLP techniques are augmented with Transformer models

to find labels for axes of discourse. We propose that such hybrid approaches may prove more

cost-effective - at least as long as the computational requirements for Transformer models are

relatively large. But, like all technologies, it is very likely that the relative computational costs

will decrease over time - although the models will likely become more complex as well.

Simplifying political speech with GPT-3

Politicians are well-known for their “waffle”, where they use many words to say not very much.

While articles written for public consumption, such as news articles (at least well-written ones)

are carefully crafted to be as concise and information-dense as possible, political speeches are

often given“off-the-cuff”, or at the very least, with little practice. Politicians also use strong,

exaggerated language to evoke emotions in listeners, as well as create “sound bites” which will

be picked up by the media.

However, this form of language also leads to long, complicated compound sentences which are

difficult even for humans to parse. For example, consider this quote from a speech by Australian

Senator Michaelia Cash:

48OpenAI – An “AI research and deployment company” attempting to “ensure that artificial general intelligence
benefits all of humanity” (OpenAI, 2021)
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"As we were talking about yesterday, there is a clear choice at the

next election: if you want to pay higher taxes, vote for Mr Shorten,

the Leader of the Opposition, but if you want lower taxes, if you want

a government that will back you every step of the way, if you want

more money in your back pocket, then vote for the Liberal-National

government, because, at the end of the day, the only plan that the

Labor Party have for the Australian people is tax, tax and more tax."

-- Original snippet from a speech by Australian Senator Michaelia Cash

The general point in the above statement is clear: a Labor government would increase taxes,

but an LNP government would decrease them. Whilst the task of text summarisation may

feel natural for an English speaker, and is the kind of thing taught in upper primary school, for

traditional NLP technology, text summarisation is considered very hard. Identifying the key terms,

or topics, or the relationships between terms and entities are all tasks, as we have seen, that NLP

can accomplish, but summarisation requires not only comprehension, but then generation of lucid

prose representing the key semantic elements and relationships in the source text (see ‘When

Computers Learn to Write it Themselves’ below).

Figure 15: Text summarisation is simply another abstract word-completion task for Transformer
models. Any waffly, long-winded speech to be summarised (A) can be passed as a task to a transformer model
with a few-shot human-completed prompt (B), yielding remarkable results from the model as it accomplishes the
task on the new text, mimicking the examples in the prompt.

However, for large Transformers text summarisation is just one more abstraction of next-word

completion. By leveraging few-shot priming, if OpenAI’s GPT-3 (Bommasani et al., 2021) is
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given the prompt,

Prompt 1

> TEXT -- ‘There are massive numbers of refugees in

the world|something like 42 million was mentioned

earlier by one speaker|and it is an enormous problem.’

> SUMMARY -- ‘The problem of the 42 million refugees in the world is

enormous.’

and,

Prompt 2

> TEXT -- ‘Grandfathered conflicted remuneration presents an

ongoing conflict of interest which can harm retail clients by

entrenching customers in older products, even where newer, better

and more affordable products are available on the market.’

> SUMMARY -- ‘Grandfathered conflicted remuneration causes an ongoing

conflict of interest because it entrenches customers in older products.’

then, in Fig. 15 the result, when OpenAI’s GPT-3 model is asked to summarise Cash’s speech

based on the few-shot prompt or template examples, is a 70% reduction in word count, yet

providing a high-fidelity rendering of the semantics of the original text.

For downstream processing tasks, this kind of high-quality summarisation capability is both re-

markable and highly valuable. Models trained on ‘plain English’ could be deployed on transformer

summarised text, as the bloat of political discourse would be washed away.

Identifying Themes with Transformers

A common, and again, highly abstract task that is often needed in text processing at scale, is to

assign a ‘theme’ or ‘topic’ label to a collection of terms or related entities. Consider the following

collection of antonyms,

Illegal -- lawfully

agreement -- disagreement

aliens -- acquaintance

establish -- disprove

a likely human label for the theme or topic of this collection is ‘Law’. However, as with text
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summarisation, there is no simple explanation or algorithm that stands behind human cognition

on this kind of complex, abstract task. However, for transformer models, this kind of task, with

a carefully constructed few-shot prompt, again falls within scope due to the highly abstracted

semantic layers that sit within the model.

Figure 16: What theme is this? Large transformer models can find abstract terms to sum up
collections of words Here, a large corpus related to “Donald Trump” (A) has first been processed to discover
underlying semantic antonym axes (B) which require labelling for human analysis and downstream visualisation
and processing. The GPT-3 model is first primed with a few human-crafted examples of the completed task (C),
before it is asked to do the same with series of unlabelled sets (D).

By way of example, suppose we are analyzing articles containing the key phrase “Donald

Trump“, and have developed a method to identify major “axes of discourse” – sets of antonym

pairs that define core semantic dimensions of the corpus. If there are just a few of these pairs, the

thematic labelling problem might require a human only a few minutes of focused attention. How-

ever, if hundreds of such pairs are discovered, a human could easily become tired, overwhelmed, or

subject to their own biases as they seek to spin Trump-related discourse in a particular direction.

GPT-3 can again come to the rescue (see Fig. 16) since this form of “abstract thinking” is

something that a large Transformer model is well-suited to. By passing just a couple of pre-

labelled thematic sets to the model, unlabelled sets can be labelled in milliseconds by the large

transformer.
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Whilst these labels are reasonable, care needs to be taken to avoid recency bias49. Transformer

models have a tendency to more strongly weigh the most recent context, which might work against

the template of this particular task, where the most prominent antonym pair (due to, say, some

factor weighting method) may be stated first. One solution to this problem might be to feed the

word-antonym pairs into GPT-3 backwards, so the most prominent word pairs (i.e. top of the

list in the Figure) are seen most recently - this would leverage the recency bias to perform an

implicit weighting to the word pairs.

When Computers Learn to Write it Themselves: Generative Models and

Creative Machines

Generative models such as Pix2Pix (Isola et al., 2017), CycleGAN (Zhu et al., 2017), and

GameGAN (Kim et al., 2020) have demonstrated that computers can be “creative” in a sense

typically reserved for the most talented of humans. These models can create artwork such as

text, audio, images, or video, and have demonstrated significant power.

One famous (and infamous) example of these generative networks has been a significant cause

for public discussion. The proliferation of “DeepFakes” has allowed anyone with a phone to take

a video and swap faces within it with the face of another person. This technique is based on deep

generative adversarial models50 (or GANs) and has proven successful. Even organizations such

as Disney (Naruniec et al., 2020) have published research on this technology, and its applications

in the entertainment industry are bountiful.

Language models such as GPT-3 can also be used as generative models, writing text based on

a “prompt”. These models have demonstrated significant intelligence and creativity while doing

so - for example, we previously saw how it could generate poetry in the style of Shakespeare.

Generative models are becoming more powerful over time, and are also becoming more widely

49recency bias – Bias that stems from weighting the most recently seen data higher than older data.
50generative adversarial models – a recent class of models that employ a coupled neural architecture: one

model (the generator) creates examples (images, text) to appear realistic, whilst another model (the discrimi-
nator) is trained to pick the generated examples from the real. By coupling the two models, and making them
‘adversaries’, the generative model is effectively forced to learn to make remarkably realistic examples.
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used. More powerful video and photo production and editing techniques will become common-

place, as DeepFake technologies become more realistic and more controllable. And new language

models will generate text with more intelligence, as well as generating artefacts such as images

from a simple text prompt (Ramesh et al., 2021).

These novel generative techniques have caused ripple effects throughout the entire field of

machine learning. They are extremely useful for generating datasets to train on – for example,

given a few pieces of text from a certain source it could quickly generate a large amount of text

in that style, which can subsequently be analysed. In applied social science, these models are just

beginning to be adopted by researchers seeking to turn thousands of old, often dirty administra-

tive documents, into data. Experimental work by Yin (2019) demonstrates how powerful GAN

architectures can be, achieving high performing document cleaning/denoising for downstream

analysis. Since GANs can work with unpaired datasets, the ability to make progress on previously

insurmountable translation or optical recognition tasks (often with limited training material) will

open up potentially huge amounts of historical records to analysis at scale. Standard translation

or transformation tasks require paired data – many examples of the artefacts before and after the

desired transformation – so the model can learn the function which sits between these two states.

However, GANs can work with unpaired before/after data since they merely need examples of

true raw and true transformed data to populate the ‘line-up’ for the discriminator model to pick

from.

Will we see ‘Intelligence as a Service’?

One of the key contributors to the recent advances in NLP has been the proliferation of extremely

fast and relatively affordable GPU-accelerated machine learning pipelines. Models such as GPT-3

DaVinci (with “175 billion parameters51”) (Brown et al., 2020) require many machines to run in

parallel while training. Recent advances in parallel computing, coupled with significantly more

powerful hardware, has enabled such models to be trained.

51parameters – A value within the model that is learned through the machine learning process.
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Although the compute requirements have lowered to the point of feasibility for large organiza-

tions, the expense is still significant and the largest models remain the sole domain of organizations

such as DeepMind and OpenAI. OpenAI, in particular, has successfully demonstrated that API52-

based access to text models (through a simple code library) can give researchers and engineers

access to GPT-3 levels of performance without requiring any local computation at all. This

“cloud53-based execution” pipeline abstracts away the difficulties of training and running these

large models, at the cost of charges for use of the API.

Open-source models that can run locally, such as GPT-Neo (Black et al., 2021) (and its

successor, GPT-NeoX (Andonian et al., 2021)) are being worked on by the research community,

but it is unclear whether researchers will want to run such models locally (or even be able to at all)

on typical hardware. While the API costs of OpenAI’s GPT-3 can be significant, the underlying

compute requirements are also significant and it is unclear whether economies of scale will allow

organizations such as OpenAI to offer their APIs for a cheaper overall cost than the potential

price of running the models locally.

As it becomes increasingly apparent that these complex machine learning pipelines are powerful

and useful tools, resources such as the OpenAI GPT-3 API will almost certainly become more

common over the next few years. Just as cloud computing revolutionized “software-as-a-service”

and “infrastructure-as-a-service”, so too will these APIs introduce “intelligence-as-a-service”. All

signs indicate that these efforts will be very successful, and potentially lead to wide adoption of

AI-based technologies in traditionally difficult fields of AI such as natural language processing.

52API – An Application Programming Interface (API) is an exposed endpoint to a particular piece of computer
software that other software can use to interface with it.

53cloud – A “cloud” is composed of a set of computers that are combined to form an abstract interface
that facilitates various tasks and workflows without requiring physical access to the hardware, or even underlying
knowledge of how the hardware is being used.
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Tomorrow’s Need Today: a new Data Ecosystem to Support Foundation

Models for Social Good

The transformer revolution is not only a revolution in AI, it is also opening up new frontiers

in data opportunities, risks and responsibilities. It has ever been thus: the mere existence of

new technology is not enough, social value arises when technology is embedded in a healthy

ecosystem.

Figure 17: GovLab has proposed the Chief Data Steward as a new role for organisations to ensure data
are responsibly, and actively used for social good. Whereas data stewardship was previously constrained to
the good management of data assets, the data steward of the future will be responsible for building partnership
and networks to actively make use of data under her care for impactful social good. Anything less, will be seen
as an abrogation of duty. – reproduced from Figure 3, Verhulst et al. (2020)

Recently, researchers at GovLab (Verhulst et al., 2020) have advanced the notion of data

stewardship, and even conceived of the new ‘C-level’ role, ‘Chief Data Steward’ (see Fig. 17).

They conceptualise the new role as having three key functions,
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Data stewards have three responsibilities. First, they COLLABORATE,

working with others to unlock the value of data when a clear case

exists. Second, they PROTECT customers, users, corporate interests,

and the public from harm that might come from sharing or use. Third,

they ACT, ensuring relevant parties put the insights generated to use.

-- p.8, Verhulst et al. (2020)

They envision a world in which large public and private organisations no longer see internal

data (administrative or otherwise) as either a risk to be managed, or a private resource to be

mined, but rather, a valuable public good that must be opened up – responsibly, ethically –

for social good. Indeed, they argue that a new kind of ethical dimension should emerge, where

corporations and public entities are ethically bound to ensure their data is being used for social

good.

In this world, stewardship matters. Whereas this term has been previously understood as

mere collation, organisation, and indexation of internal data (‘good management’), now, the

Data Steward must seek out partnerships and collaborations of social value for their data, ensure

these uses are responsibly brokered, being mindful of the rights of all stakeholders in the chain

from data subjects54 to data users, and take action to ensure that actual impacts are occurring in

the manner intended. We are not yet in a world where ‘CDS’ roles are being appointed in major

government and private entities, but perhaps we are not far from it.

That said, the demands of this new kind of stewardship go beyond existing models of data

storage and use. Traditional models of data storage ‘on-prem’ (on premises) or even ‘on cloud’

(see above) are not a sufficient solution when those data may contain private or protected at-

tributes of data subjects. If social value could be created by running machine learning models

on such data, is there a way that the data steward of tomorrow could allow model training

without needing to share the data, or provide access to the raw observations? Here, differential

privacy (Ha et al., 2019) is an emerging concept that will likely play an important role. In general

terms, a data exposure methodology satisfies differential privacy if there is no way that individual

54data subjects – the person from whom data (attributes, measurements) have been taken or observed.
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information can be obtained (by any method) from the aggregated, exposed data. Put another

way, small changes (the addition or omission of an individual), or ‘differences’ to the underlying

dataset should not change the aggregated patterns in the exposed dataset. Such techniques seek

to ‘bake in’ privacy and protection, dominating classical approaches which rely on honour codes

or license agreements.

Future Applications and Possibilities

Transformer-based language models, such as OpenAI’s GPT-3 (Brown et al., 2020), are incredibly

powerful and have significant potential. However, they are also new, and they have not yet been

widely used in real-world applications. These latest breakthroughs in NLP have the potential to

change the way humans work with text, but it is not enough that the machine learning community

be excited about them. These new capabilities need to be utilized. We conjecture that the next

several years will see widespread interest in NLP, as organizations and individuals around the

world begin to understand just how powerful these techniques truly are.

Legal professionals will use these models to understand contracts and automatically parse

thousands of pages of legal documents in minutes. Businesses will gain new insights into the

requirements of their customers through analysis of posts on social media. And we will learn

more about how the general public thinks, and how this can be influenced (or, in some cases,

manipulated). Analysts will be able to locate the needle in a haystack when searching for relevant

material: “retrieve opinion pieces illustrating solutions for disadvantaged migrants”, currently

impossible because such abstract concepts cannot be realised in current search engines. The

possibilities are endless - and, like any new technology, it must be adopted by those who would

use it to benefit society.

It is impossible to claim, at least with any measure of certainty, what the next revolution

in Natural Language Processing will be. But perhaps this is beside the point, as the current

revolution has just begun.
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(2003). Broca’s area and the language instinct. Nature Neuroscience, 6(7):774–781. 22, 23

Nadeem, M., Bethke, A., and Reddy, S. (2020). StereoSet: Measuring stereotypical bias in

pretrained language models. eprint: 2004.09456. 19

Naruniec, J., Helminger, L., Schroers, C., and Weber, R. M. (2020). High-resolution neural face

swapping for visual effects. In Computer Graphics Forum, volume 39, pages 173–184. Wiley

Online Library. 56

Nelson, L. K., Burk, D., Knudsen, M., and McCall, L. (2021). The Future

of Coding: A Comparison of Hand-Coding and Three Types of Computer-Assisted

Text Analysis Methods. Sociological Methods & Research, 50(1):202–237. eprint:

https://doi.org/10.1177/0049124118769114. 2, 3, 33

OpenAI (2021). https://openai.com/. 52

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,

Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Te-

jani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019). Pytorch:

69

https://openai.com/


An imperative style, high-performance deep learning library. In Wallach, H., Larochelle, H.,
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