
Paired completion: quantifying issue-framing at scale
with LLMs

Simon D Angus and Lachlan O'Neill

SoDa Laboratories Working Paper Series
No. 2024-02

REF

Simon D Angus and Lachlan O'Neill (2024), SoDa Laboratories Working Paper Series No. 2024-02, Monash Business School,
available at http://soda-wps.s3-website-ap-southeast-2.amazonaws.com/RePEc/ajr/sodwps/2024-02.pdf

PUBLISHED ONLINE

16 June 2024

Paired completion: quantifying issue-framing at scale with LLMs

Simon D. Angus*

SoDa Laboratories & Dept. of Economics
Monash Business School;

Data Futures Institute, Monash University
simon.angus@monash.edu

Lachlan O’Neill*

SoDa Laboratories
Monash Business School

lachlan.oneill@monash.edu

Abstract
Detecting and quantifying issue framing in tex-
tual discourse - the slant or perspective one
takes to a given topic (e.g. climate science vs.
denialism, misogyny vs. gender equality) - is
highly valuable to a range of end-users from
social and political scientists to program eval-
uators and policy analysts. Being able to iden-
tify statistically significant shifts, reversals, or
changes in issue framing in public discourse
would enable the quantitative evaluation of in-
terventions, actors and events that shape dis-
course. However, issue framing is notoriously
challenging for automated natural language pro-
cessing (NLP) methods since the words and
phrases used by either ‘side’ of an issue are
often held in common, with only subtle stylis-
tic flourishes separating their use. Here we
develop and rigorously evaluate new detection
methods for issue framing and narrative anal-
ysis within large text datasets. By introducing
a novel application of next-token log probabil-
ities derived from generative large language
models (LLMs) we show that issue framing
can be reliably and efficiently detected in large
corpora with only a few examples of either per-
spective on a given issue, a method we call
‘paired completion’. Through 192 indepen-
dent experiments over three novel, synthetic
datasets, we evaluate paired completion against
prompt-based LLM methods and labelled meth-
ods using traditional NLP and recent LLM con-
textual embeddings. We additionally conduct
a cost-based analysis to mark out the feasible
set of performant methods at production-level
scales, and a model bias analysis. Together, our
work demonstrates a feasible path to scalable,
accurate and low-bias issue-framing in large
corpora.

1 Introduction

The advent of large language models (LLMs) has
changed the landscape of NLP research. State-of-

*Both authors contributed equally to this work and are
listed alphabetically.

the-art LLMs are generally trained as chat-bots that
can then perform most NLP tasks through a conver-
sational, prompt-based approach where one simply
asks the model for the answer. Besides unlocking
previously inconceivable use cases with their log-
ical reasoning skills and deep knowledge of the
world, LLMs have demonstrated state-of-the-art
performance in many domains. We focus on the
particular problem of textual alignment, which is
the problem of determining the likelihood that a
person or entity who said some text a might then
say some other text b. This is similar to, but distinct
from, classification in that, rather than separating
the texts into classes, we instead have a high-level
conceptual map of views of the world (“framings”
(Entman, 1993)), and wish to determine the align-
ment of texts to these framings relative to other
(potentially overlapping) framings.

We propose that the current conversational,
prompt-based approaches to using LLMs for tra-
ditional NLP tasks (i.e. “asking the LLM”) are
sub-optimal when other, more direct methods are
available. We demonstrate an example of this ex-
perimentally through 192 independent experiments
across several methods, including traditional NLP,
contextual embeddings, conversational/prompting
approaches, and a novel method called “paired com-
pletion”. We demonstrate that, at least in this prob-
lem domain, practitioners are generally better off
using large language models as direct, probabilistic
language models, rather than relying on chat- and
instruct-based fine-tuning.

Paired completion takes advantage of the log-
probability (logprob) outputs of an LLM1 to find
conditional probabilities of a text given a series
of conditioners from different conditioning sets.

1Note: logprobs are available as outputs through the Ope-
nAI API for “babbage-002” and “davinci-002” (OpenAI,
2024a), and can be gathered by running the “vLLM OpenAI-
compatible API” (Kwon et al., 2023) on a local machine, for
a wide variety of open-source models.

1

We use the relative differences in probabilities to
establish a baseline metric that (at least theoreti-
cally) is resilient to the model’s prior probabilities
of both the conditioning text and the text being
aligned to the conditioning sets. We demonstrate
empirically that this method is successful, and that
one achieves superior performance from using this
method with raw base models compared to “ask-
ing” instruct-fine-tuned AI-models the “question”
at hand.

We conduct rigorous evaluation of our pro-
posed method by comparing it to four framing
classification approaches over three diverse, syn-
thetic textual datasets, including two baseline ap-
proaches (traditional tf-idf vectors (Sparck Jones,
1972; Salton, 1983), and fasttext sentence embed-
dings (Bojanowski et al., 2017)) and three LLM-
based methods (contextual embeddings (Peters
et al., 2018; Devlin et al., 2018; OpenAI, 2024b)
LLM chat token probabilities (Radford et al., 2018,
2019), and our novel paired completion method).
We demonstrate that the LLM-based approaches
are, in general, far superior to the alternatives.
The LLM-embedding approach is powerful with
enough training data, but with small amounts of
data (e.g. five sentences for each conditioning
set) the LLM methods easily outperform -LLM-
embeddings. We also demonstrate that paired com-
pletion with LLMs is generally superior to the LLM
prompting approach. We discuss why this might
be the case in Section 2.1.1, from a theoretical
perspective. We also conduct a cost comparison
analysis at current gated API pricing to assess any
trade-offs in performance.

1.1 Contributions
We introduce paired completion as a solution to the
problem of textual alignment. We construct a series
of high-quality synthetic datasets using a novel
method which captures nuances of discourse on
complex topics, and use these datasets to evaluate
the performance of several approaches to textual
alignment. We demonstrate that paired completion
is a novel, efficient, and more effective method
for performing textual alignment (compared to a
chat-based LLM baseline).

1.2 Related Literature
Traditional NLP classification techniques have
been in use for decades. We consider two variants
of such “traditional” techniques (where traditional
techniques are those which were used before the

advent of Large Language Models). We consider
the class of methods which seek to transform text
into a vector of information, in some sense, which
can then be fed into a machine learning model such
as a logistic regression (Hosmer Jr et al., 2013) to
create a classification model.

One traditional approach we consider applies
frequency counting through the TF-IDF measure
(Sparck Jones, 1972; Salton, 1983) to vectorize
the texts, and then feed the vectors into a logistic
regression model (Hosmer Jr et al., 2013) to create
a simple baseline classifier.

One can alternatively generate these vectors by
using word embeddings (Mikolov et al., 2013),
which assign words with a vector in some n-
dimensional vector space where (ideally) dimen-
sions correlate to some sense of semantic mean-
ing. We use the FastText embeddings (Mikolov
et al., 2013), through their Python library. To cre-
ate document embeddings, we use their sentence
embedding method, which performs an averaging
operation on the word vectors to create an overall
sentence vector2.

Whereas word embeddings just discussed en-
code words first in high-dimensional vector space,
which are then averaged across words in a sen-
tence, in contrast, contextual embedding meth-
ods such as ELMo (Peters et al., 2018), BERT
(Devlin et al., 2018), and more recently, OpenAI’s
“text-embedding-3-small” and “text-embedding-3-
large” (OpenAI, 2024b), are contextually-aware,
meaning they take an entire document into account
when creating the embedding vector. While the
specifics of OpenAI’s embedding implementation
is unknown, the introductory blog post refers to Ma-
tryoshka Representation Learning (Kusupati et al.,
2022). We make use of these contextually aware
embeddings in a similar way to TF-IDF and word-
embeddings as inputs to a logistic regression model
for text classification.

The recent advance of Large Language Models
(LLMs) stems from the development of sequence-
to-sequence models (Sutskever et al., 2014) and
the Transformer (Vaswani et al., 2017) in particu-
lar, which makes use of the attention mechanism.
BERT (Devlin et al., 2018), and its derivatives such
as ALBERT (Lan et al., 2020) and RoBERTa (Liu

2Note that the details can depend on the model used, as
discussed here https://github.com/facebookresearch/
fastText/issues/323#issuecomment-353167113. We
use the default model “cc.en.300.bin”, which is a “CBOW
with position-weights in dimension 300” as per https://
fasttext.cc/docs/en/crawl-vectors.html.

2

https://github.com/facebookresearch/fastText/issues/323#issuecomment-353167113
https://github.com/facebookresearch/fastText/issues/323#issuecomment-353167113
https://fasttext.cc/docs/en/crawl-vectors.html
https://fasttext.cc/docs/en/crawl-vectors.html

et al., 2019) continued to introduce new techniques
and analyze training methods for such models. The
Generative Pre-Training model architecture (Rad-
ford et al., 2018, 2019)(i.e. GPT) is a decoder-only
Transformer architecture that has become the de-
facto standard. All LLMs in our experiments use a
GPT-like architecture, albeit with some advances
and optimisations, such as Mixture of Experts (Ja-
cobs et al., 1991), and improvements in training
methodologies such as Chincilla-optimal training
(Hoffmann et al., 2022).

One common measure of the capability of an
LLM is perplexity (Jelinek et al., 1977), which is
a statistical measure of the model’s “surprise” at
a given completion under the logic that a model
which is less surprised by correct answers is bet-
ter (similar to the maximum likelihood principle).
The paired completion approach developed in this
work is a measure similar to perplexity, but instead
of seeking the estimated likelihood of a particular
completion we instead calculate and compare the
likelihoods of multiple completions of a given text.

2 Textual Alignment & Paired
Completion

In broad terms, we define the “textual alignment”
between two texts as a measure of the likelihood (in
some sense) that the two texts might be spoken by
the same entity. This implies the statements come
from the same theoretical outlook, model of the
world, and/or causal structure. It is important that
the expressive entity is generally defined. For we
will be, at times, leveraging generative AI LLMs
to play the role of E, alongside human expression,
to quantify the degree of alignment.

Definition 1 (Textual alignment). Given two con-
ditioning texts a and b, and an expressive entity, E
(e.g. a person, a generative AI LLM), text x is said
to be more textually aligned with a versus b if it
is more likely that x would be expressed by some
E′ who previously expressed a, than the alternate
case where E′ had previously expressed b.

Importantly, Def 1 is not the same as similarity.
Consider the texts, ‘Getting a dog will improve
your life’ and, ‘Getting a dog will ruin your life’.
Whilst these are very similar (in fact, an LLM-
powered contextual similarity score would be close
to 1 for these texts), they are not textually aligned.
If someone holds the view that dogs improve your
life (framing A), it is highly unlikely that they
would say that dogs ruin your life (framing B). Yet

these texts are highly similar on sentiment (both
are neutrally posed) and share an almost identical
vocabulary. However, consider the third text, ‘Pets
help to keep you fit and healthy’. It is clear that this
text is strongly textually aligned with framing A,
but strongly dis-aligned with framing B. Yet, this
text is perfectly dissimilar in vocabulary, and is of
middling similarity in an LLM-powered contextual
embedding space. These examples demonstrate
that issue-framing, formalised as textual alignment,
is both ‘simple’ for a human to perceive, yet diffi-
cult for existing computational methods (based on
similarity, sentiment, vocab, embeddings) to detect.

As such, we desire a new set of tools to quantify
textual alignment. We consider these tools in the
context of the “Issue-Framing” task, where a user
wishes to detect and quantify texts from a large
corpus which share the same framing, via textual
alignment. Suppose the user has a small set of texts
which together lay out a given framing position A,
as compared to an opposing framing position B
with a similar number of texts. We then formalise
this task as follows:

Definition 2 (The Issue-Framing Task). Given a
corpus of texts X (target texts) and a set of priming
(or framing) texts S = {A,B} comprising texts
which represent framing A and B, for each x ∈ X ,
quantify the textual alignment towards A and B.

Naturally, the user could accomplish this task
by reading every text in X and marking (labelling)
whether the text is textually aligned with the con-
ditioning or framing texts from A or B. However,
the aim of our work is to develop methods that
might reliably accomplish this task at scale in an
automated manner.

We conjecture that LLMs are well suited to per-
forming the issue-framing task since, with the ad-
vent of attentional transformer technology, they
have been shown to be remarkably successful at
modelling human language. That is, forming a
deep abstract representation of the meaning of hu-
man communication. Precisely the capability we
require to assess textual alignment.

2.1 Paired Completion

We propose the “paired completion” method as a
solution for the textual-alignment definition given
above. Figure 1 gives an overview of its compo-
nents. Given some set of target texts on a given
topic we wish to analyse, and a small set of texts
which provide frames for perspective A and B on

3

a given topic (e.g. ‘get a dog’ vs. ‘don’t get a
dog’), we construct a pair of prompt sequences,
s1 + x and s2 + x to pass to a generative LLM.
Each prompt sequence is composed of a random
selection from one of the priming sets (e.g. s1 ‘get
a dog’), followed by the target text (x).

For example, a prompt sequence could be ‘[prim-
ing text from A, s1] Owning a dog will improve
your life. [target text, x] Dog owners have lower
blood pressure and less stress in general.’ A similar
sequence would be created for the same text x with
priming text(s) from set B. Each prompt sequence
is then passed, one at a time, to a generative LLM,
and instead of seeking a completion (i.e. generat-
ing new tokens) from the LLM, we instead exploit
many LLM’s ability to provide log-probabilities
(the log of the likelihood that the model would
have chosen that token/word next) for each token
passed to the language model as if it had generated
this exact sequence of text. By so doing, we gener-
ate two conditional log-probabilities, lp(x|s1) and
lp(x|s2) (see details in sec 2.1.1), the conditional
log-probs of x being the completion to the priming
sequence s1 and s2 respectively.

In this way, we are leveraging the twin features
of LLMs: first, that LLM attentional mechanisms
are highly adept at representing the latent semantic
state of a given text; and second, that LLMs have
been trained to provide coherent sequences of text
(i.e. to avoid non sequiturs). Together, the priming
sequence will set the LLM on a particular statisti-
cal trajectory to keep the framing state consistent,
which implies that if x is within this trajectory (i.e.
x is textually aligned with the priming state), the
summed log-probabilities the LLM assigns to the
words in x will be high. Whereas, if x appears
to contradict or speak for a different framing than
the priming sequence, the log-probabilities for the
words in x will be very low. It is this difference
that we exploit by testing both priming sequences
from A and B to then calculate the Diff metric.

To summarise, paired-completion leverages the
‘deep’ language modelling properties of LLM –
their deep contextual representation of human
meaning – to quantify the likelihood that a target
text will follow from a given conditioning prior.
As such, we conjecture that powerful LLMs that
are neither fine-tuned (to a particular task or cor-
pus) nor moderated by post-training methods to
suppress some behaviours and up-promote others
(e.g. reinforcement learning with human feedback,
RHLF (Ziegler et al., 2020)) will be most well

suited to the paired completion method. Either of
these adaptations of LLMs could reasonably trade
off fundamental (general) language modelling ca-
pabilities of LLMs in service of performance or
safety on a particular task or in a particular context.

See the Appendix for details of the implementa-
tion of this method in evaluation.

2.1.1 The Diff Metric
Suppose we have a set of n priming sequences, S =
{s1, s2, ..., sn}, and a set of m target sequences
X = {x1, ..., xm}. We wish to find the relative
alignment, in some sense, of the elements within
X towards the different priming sequences in S.

We define the diff metric as follows:

∆(s1, s2, x) = lp(x|s1)− lp(x|s2)

Note that ∆(s1, s2, x) = −∆(s2, s1, x).
The diff metric ∆ describes the difference be-

tween the conditional probability of sentence x
after priming sequence s1 and the conditional prob-
ability of sentence x after priming sequence s2. In
practice, we calculate the prior probabilities of all
priming sequences s ∈ S as ps, and all texts in
x ∈ X as px, and the probability of a concatenated
string s+ x as psx. Note that concatenation is not
necessarily simple string concatenation, but rather
ensures grammatical correctness - there is no per-
fect way to do this, but we found that just ensuring
grammatical correctness seems to work sufficiently
well in practice.

We then compute lp(x|s) = psx − ps to find the
conditional probability of x. We can compare this
to the prior probability px to determine whether
the presence of s has made x more or less likely,
and we can compute lp(x|s1) − lp(x|s2) (i.e. the
∆ metric). Since a larger logprob indicates a higher
probability, ∆ will be positive if x is more likely
after s1 than after s2, and negative if x is less likely
after s1 than after s2. Because LLMs (and lan-
guage models in general) might assign different
prior probabilities to both the conditioning sen-
tences s and the alignment text x, any such method
must be robust to priors. This is why we use the
difference in conditional probabilities of the same
text with different prompts, which is robust to the
prior probabilities of both s and x.

One interpretation of this approach, with refer-
ence to Def. 1, is that the LLM performs the role
of the expressive entity E, and so provides a quan-
tification of the likelihood that the text x follows

4

Unlabelled texts
on Topics X

A primer set B primer set

Prompt to LLM: one (k=1) or two
(k=2) A/B primers as prefix to
test text.

<latexit sha1_base64="aT/hjGJN2IUZcq3Y2958XYZlWiY=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahXspuEfVY9OKxgv2QdinZNNuGJtklyYpl7a/w4kERr/4cb/4b03YP2vpg4PHeDDPzgpgzbVz328mtrK6tb+Q3C1vbO7t7xf2Dpo4SRWiDRDxS7QBrypmkDcMMp+1YUSwCTlvB6Hrqtx6o0iySd2YcU1/ggWQhI9hY6Z7H5ccn3fNOe8WSW3FnQMvEy0gJMtR7xa9uPyKJoNIQjrXueG5s/BQrwwink0I30TTGZIQHtGOpxIJqP50dPEEnVumjMFK2pEEz9fdEioXWYxHYToHNUC96U/E/r5OY8NJPmYwTQyWZLwoTjkyEpt+jPlOUGD62BBPF7K2IDLHCxNiMCjYEb/HlZdKsVrzzSvX2rFS7yuLIwxEcQxk8uIAa3EAdGkBAwDO8wpujnBfn3fmYt+acbOYQ/sD5/AEq1Y//</latexit>

lp(x|s1)
<latexit sha1_base64="rndkKON290zXt3le639wHhHeop8=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahXspuEfVY9OKxgv2QdinZNNuGJtklyYpl7a/w4kERr/4cb/4b03YP2vpg4PHeDDPzgpgzbVz328mtrK6tb+Q3C1vbO7t7xf2Dpo4SRWiDRDxS7QBrypmkDcMMp+1YUSwCTlvB6Hrqtx6o0iySd2YcU1/ggWQhI9hY6Z7H5ccn3aue9oolt+LOgJaJl5ESZKj3il/dfkQSQaUhHGvd8dzY+ClWhhFOJ4VuommMyQgPaMdSiQXVfjo7eIJOrNJHYaRsSYNm6u+JFAutxyKwnQKboV70puJ/Xicx4aWfMhknhkoyXxQmHJkITb9HfaYoMXxsCSaK2VsRGWKFibEZFWwI3uLLy6RZrXjnlertWal2lcWRhyM4hjJ4cAE1uIE6NICAgGd4hTdHOS/Ou/Mxb8052cwh/IHz+QMsWpAA</latexit>

lp(x|s2)

<latexit sha1_base64="U5TK6xmvxyQnp6ja45atmmkiD8k=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0oPtev1xxq+4cZJV4OalAjka//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7qlJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvsZl0lqULLFojAVxMRk9jcZcIXMiIkllClubyVsRBVlxqZTsiF4yy+vklat6l1Wa/cXlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwAGXI2i</latexit>s1

<latexit sha1_base64="XvexMPvx610qjITMwFWFlaAo4iE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0oPu1frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa1a1bus1u4vKvWbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gAH4I2j</latexit>s2
<latexit sha1_base64="JAu09ZBtP9D6nViMwzzD+tLiHj4=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHaJUY9ELx4hkUcCGzI79MLI7OxmZtZICF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1mu1C9K1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOiDjQM=</latexit>x

<latexit sha1_base64="JAu09ZBtP9D6nViMwzzD+tLiHj4=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHaJUY9ELx4hkUcCGzI79MLI7OxmZtZICF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1mu1C9K1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOiDjQM=</latexit>x
<latexit sha1_base64="4jJpj0za4pHLjHchASmCe1i6uGw=">AAAB+nicbVDLSgNBEOyNrxhfGz16GQxChBB2g6jHoB48RjAPSJZldjKbDJl9MDOrhjWf4sWDIl79Em/+jZNkD5pY0FBUddPd5cWcSWVZ30ZuZXVtfSO/Wdja3tndM4v7LRklgtAmiXgkOh6WlLOQNhVTnHZiQXHgcdr2RldTv31PhWRReKfGMXUCPAiZzwhWWnLNYu+acoXL0rUr0q1VHk9cs2RVrRnQMrEzUoIMDdf86vUjkgQ0VIRjKbu2FSsnxUIxwumk0EskjTEZ4QHtahrigEonnZ0+Qcda6SM/ErpChWbq74kUB1KOA093BlgN5aI3Ff/zuonyL5yUhXGiaEjmi/yEIxWhaQ6ozwQlio81wUQwfSsiQywwUTqtgg7BXnx5mbRqVfusWrs9LdUvszjycAhHUAYbzqEON9CAJhB4gGd4hTfjyXgx3o2PeWvOyGYO4A+Mzx9jj5LK</latexit>

�(s1, s2, x)

LLM
Obtain summed
log-probs of
completion x

Calculate paired
difference metric;
assign label.

Figure 1: Narrative classification with the LLM Paired completion method. Texts are taken, one at a time, as
completions to one (k = 1) or two (k = 2) priming conditioner sentences from two opposing issue framing sets, A,
B, in turn. Each conditioner is chosen randomly from the respective set when used, i.e. two conditions from set A,
followed by x, or two conditions from set B, followed by x. Instead of requiring a generative action from the LLM
the summed log-probabilities of the completion text (x) are obtained from the LLM as if the LLM had used the text
to follow the conditioners. The two resultant summed log-probs inform the Delta metric.

text s1, versus following text s2, i.e. we obtain a
measure of textual alignment.

Since the core idea of paired completion is to use
the priming/conditioning sequence to statistically
deflect the LLM towards the given framing (and
so, measure the model’s degree of ‘surprise’ with
the completion text) we conjecture that a longer
conditioning sequence may lead to improved ac-
curacy in classifying and retrieving texts aligned
with a given framing. To explore this possibility
we test two treatments, with either one (k = 1)
or two (k = 2) priming/conditioning text(s) being
used. Implementation details are provided in the
Appendix.

3 Synthetic Dataset Formation

Synthtic data was chosen for evaluation for two rea-
sons. First, non-synthetic examples of texts drawn
from a given framing perspective lack scientific
control with a variety of unobserved characteristics
potentially driving outcomes. Second, we need that
the LLMs have not seen the evaluation samples
in their training, else, completion logprobs could
reflect familiarity rather than textual alignment.

The synthetic dataset generation pipeline takes
a topic (e.g. “dog ownership”, “climate change”,
etc.) and produces a corpus of sentences that reflect
different perspectives on the topic. The generation
process is a two-step hierarchical process where
we generate seed perspective and then generate
sentences that align with each perspective. We
also generate distillations (into a smaller number
of sentences, e.g. 5), summaries, and simple names

for each side, with each of these generated from
the seed dataset (and having no knowledge of the
sentences generated thereafter).

The “dog ownership” corpus was designed (and
later proved) to be a straightforward classification
problem, for which most LLMs would find success.
The other corpora (“climate change”, “domestic
violence”, and “misogyny”) reflect more subtle,
controversial, and/or otherwise difficult issues to
discuss, and are much more likely to be affected
by the alignment process used to train the LLMs.
These indeed proved more challenging for the mod-
els to classify. However, we did not experience
outright prompt refusal in our generation experi-
ments.

4 Evaluation Approach

We compare the novel paired completion method
with two other LLM-based approaches: a prompt-
based approach with instruct/chat fine-tuned mod-
els (described next), and contextual embeddings
(described earlier).

4.1 LLM Prompting
Starting with a corpus of texts to test, we construct
a prompt with three components: 1) a static instruc-
tional component which provides the LLM with
the task information; 2) a set of context texts that
represent framing A and B to be tested (A,B); and
3) a single target text (x). Unlike in LLM paired
completion, we do not require the LLM to provide
log-probs for the input sequence, but instead, we
obtain the log-probs of the first two tokens pro-

5

duced by the LLM in response to this prompt, i.e.
the first two generated tokens. Note that, by virtue
of the constraints in the prompt, these probabilities
include the log-probs for both response A and B.
We extract the probability of the first token of the la-
bel assigned to A (e.g. ‘[equality]’ [1 token]), and
B (e.g. ‘[mis][og][yny]’ [3 tokens]), respectively.
With this information we can both identify which
set the LLM has assigned the text to (based on the
higher probability of its tokens) and calculate the
equivalent Diff metric, ∆(A,B, x).

We use a fixed prompt, which was initially fine-
tuned for GPT-4 and GPT-3.5, and then further
tuned for Mixtral-8x7b-Instruct-v0.1 and LLaMA-
2-70B-Chat. In hindsight, it was a mistake to tune
our prompts for GPT-4 first, as while GPT-4 was
very likely going to give the best performance on
the tasks at hand (compared to the other models
in consideration), it was also a lot more forgiving
of errors, confusing wording, and conflicting in-
structions within the prompt. It is also possible this
somewhat biased the prompts towards the OpenAI
models, but this was unavoidable given our pre-
liminary results (not included in this paper) were
gathered using only the OpenAI APIs; in any case,
our results demonstrate the superiority of the open-
source models on these tasks. We used a single
prompt across all models in our final experiments.

4.2 Performance Analysis

In terms of true-positives (TP), false positives (PF)
and false negatives (FN), the F1 score is calculated
as,

f1 =
TP

TP + 1
2(FP + FN)

.

The f1 score takes a value from 0 to 1, and will be
equal to 1 when the method perfectly identifies all
the ‘As’ in the data, and does not mis-identify any
‘Bs’ as ‘As’.

Confidence intervals (95%) for f1 scores were ei-
ther calculated directly from replicates, in the case
of the logistic regression methods (TF-IDF, word-
and LLM- embeddings), and using bootstrapping in
the LLM API cases (100 replicates, 1000 samples).

4.3 Summary of experiments

Together, across the five methods, four topics, and
related variants, 192 experiments were conducted,
as summarised in Table 1.

5 Results & Discussion

Our experiments demonstrate strong performance
across the board for both prompt-based and paired
completion methods, as shown in Figure 2. Paired
completion methods tend to statistically perform
the same or better than prompt-based methods.
This section includes a broad summary of results.
More detailed results, tables, and discussion can be
found in the appendices.

5.1 Comparative Analysis of Classification
Methods

With sufficient data (200+ samples), the embed-
ding approach was competitive with GPT-4 prompt-
ing. However, embeddings performed signifi-
cantly worse in few-shot learning contexts. Among
LLM instruct models, GPT-4-Turbo outperformed
all other models. GPT-3.5-Turbo, Mixtral-8x7b-
Instruct-v0.1, and LLaMA-2-70B-Chat had similar
performance, with LLaMA-2-70B-Chat having the
highest propensity for failure modes. For the paired
completion approach, performance trended with
model parameter count, with LLaMA-2-70B per-
forming best, followed by Mixtral-8x7b, davinci-
002, and babbage-002. This consistency may oc-
cur because paired completion is less sensitive to
model-specific factors like architecture, alignment,
and fine-tuning.

The three methods for interaction with LLMs
that were analysed are all effective, and uniquely
suited to different scenarios. The paired comple-
tion approach proved highly effective, efficient, and
robust to model-specific influences. Embedding-
based methods are extremely cheap due to a combi-
nation of cheap models and fewer calls to the APIs,
and proved very effective with sufficient data. How-
ever, this data threshold was far beyond the five ex-
emplars used for the other two approaches, and per-
formance suffered greatly when using 50 exemplars
(which is still an order of magnitude more than the
five exemplars provided to the other two methods).
Prompt-based completion proved effective, particu-
larly with GPT-4 (which does not support the logit
outputs required for paired completion), but when
possible we generally found paired completion to
be more cost-effective than the prompting approach.
On the other hand, the prompt-based method is
very straightforward, and as models increase in ca-
pability (and, ideally, increase in cost-performance
as well) the cost-performance distinction between
these two techniques might diminish.

6

Method Models Topics Variants Total

Log-Reg :: TF-IDF 1 4 6 24
Log-Reg :: FastText 1 4 6 24
Log-Reg :: LLM Embeddings 2 4 6 48
LLM Paired Completion 4 4 2 32
LLM Prompting 4 4 4 64

TOTAL 192

Table 1: Summary of Experiments The same four topics were tested across all configurations (‘dog-ownership’,
‘climate-change’, ‘domestic violence’, ‘misogyny’). For each Log-Reg (Logistic Regression) style experiment
where a logistic-regression model was trained on a training sub-set of the data, 6 different sub-set sizes were used
(n ∈ {10, 20, 50, 100, 200, 500}). For LLM Paired Completion two variants for the number of conditioners were
used (k ∈ {1, 2}). For LLM Prompting, 4 prompt variants were used (seeds, distilled, summary, zero-shot).

0.
65 0.

7
0.

75 0.
8

0.
85 0.

9
0.

95 1

f1

bab002 (k=2)
bab002 (k=1)

llama (distilled)
llama (summaries)

dav002 (k=1)
dav002 (k=2)

mxtrl (k=1)
mxtrl (distilled)

gpt35 (distilled)
llama (k=1)

mxtrl (summaries)
gpt35 (summaries)

llama (k=2)
mxtrl (k=2)

gpt4 (distilled)
gpt4 (summaries)

climate_change

0.
65 0.

7
0.

75 0.
8

0.
85 0.

9
0.

95 1

f1

domestic_violence

0.
65 0.

7
0.

75 0.
8

0.
85 0.

9
0.

95 1

f1

misogyny

0.
65 0.

7
0.

75 0.
8

0.
85 0.

9
0.

95 1

f1

overall

Figure 2: F1 outcomes across LLM prompting (□) and paired-completion (△). Filled markers indicate
approaches that are statistically similar to most performant method. Semi-transparent shading shows 95% confidence
interval for these methods to indicate other methods which provide similar performance to performant models.
Ranking is by overall performance. See appendix for performance comparison with log-reg classification methods.

5.2 Cost vs. Performance
An analysis of the cost-performance trade-off for
the LLM methods (Figure 3) reveals that the
paired completion approach with LLaMA-2-70b
and Mixtral-8x7b is very cost-effective for their
level of performance. While GPT-4 had the best
overall performance, it was also by far the most ex-
pensive. Other configurations can be chosen based
on requirements and funding availability. All LLM-
based approaches were significantly more expen-
sive than the embedding approaches, which require
more data but proved competitive given sufficient
training examples.

5.3 Model Bias
We observed differences in the bias displayed by
models and techniques that were dataset-dependent
(Figure 4). Embedding-based approaches appear
most robust to bias, with no statistically signifi-
cant bias found for any configuration. LLM-based

approaches demonstrated bias in some scenarios,
with the k = 2 paired completion configuration
potentially reducing bias compared to k = 1. The
top performing LLM paired completion methods
(mxtrl-k=2; llama-k=2) show significantly less bias
than the top LLM prompting approaches, includ-
ing GPT-4. Further studies are needed to examine
the sources of these biases, such as bias in training
data, language modeling, or alignment. However,
the results suggest the stronger LLM paired com-
pletion methods (e.g. llama-k=2) achieve a balance
of high accuracy and low bias.

6 Limitations & Further Work

One advantage of the paired completion approach
is that it can easily be extended to more than two
narrative sets with only a linear increase in the
number of model calls, rather than the quadratic
one might expect. The time complexity of the com-
parison algorithm after calling the model is possi-

7

f1
 (o

ve
ra

ll)

Figure 3: Cost — performance trade-off for LLM methods. Colouring and styling follows performance figures
in the rest of the paper. Model short name and variant are provided for clarity. Note: logarithmic scaling is applied
to the x-axis to handle the five orders of magnitude difference betweeen LLM embedding approaches and GPT-4
prompting approaches.

bly superlinear in the number of classes (though
the exact behaviour would be implementation-
dependent), but the number of model calls is lin-
ear in the number of classes. We thus expect the
latter to be the overwhelming factor at least until
reaching thousands of classes, given an efficient
implementation of the comparison algorithm.

The data seems to offer some support for the
conjecture that aligned models are more prone
to bias when performing framing alignment, but
we cannot make any definitive claims without sig-
nificantly more evidence and data. We only used
three “serious” topics (climate change, domestic vi-
olence, and misogyny); for further study, we would
significantly expand this (perhaps to 10, 20, or even
100 topics, ranging across and beyond, say, the
Overton window (Russell, 2006)). While out of the
scope of this study, such an experiment would hope-
fully demonstrate correlations (or lack thereof) be-
tween the placement of ideas and framings within
the spectrum of discourse and the models’ bias
towards or against them.

Throughout this paper, we have demonstrated
that more powerful models are more capable of
these tasks and that the performance differences
can be quite distinct. One might invert this line of
thinking and use performance on this task as an
evaluation benchmark for large language mod-
els. Note that this is different to perplexity, which is
an absolute measure of how “surprised” the model
is by the (or a) correct completion, with the intu-
ition that a good model should be less surprised

by the correct answer (i.e. a maximum likelihood
approach). We instead measure how “surprised”
the model is by each text within a set of comple-
tions relative to one another (even if, as a whole,
the model finds the set of completions very likely
or unlikely).

The number of possible experiments also in-
creases quadratically with the dataset size, rather
than linearly as with perplexity.

In our experiments, we ran LLMs on labelled
classification corpora designed to mimic lines of hu-
man discourse across a particular topic, but we only
used the accuracy (and similar measures), rather
than more deeply analysing the failure modes of
the model(s). By performing such an analysis, ei-
ther with humans or with LLMs directly, one might
better understand “why” a given model tends to
make certain kinds of mistakes. A meta-analysis
with an LLM (perhaps even the same LLM) could
facilitate a level of introspection from the models,
where they look at their experimental performance
and note their biases (which can perhaps be incor-
porated into further prompts or fine-tuning efforts).

Acknowledgments

This work was supported by funding from the Paul
Ramsay Foundation, under the ‘narratives of disad-
vantage’ project.

8

Confusion Matrix off-diagonal difference in %
 fn/(tp+fn) - fp/(tn+fp)

f1 Score
(all topics)

Model more likely infer ‘negative’ framing,
when in fact framing was ‘positive’

Model more likely to infer ‘positive’ framing,
when in fact framing was ‘negative’

Figure 4: Issue-framing classification error asymmetry (“bias”) across LLM methods and topics. The first
three panels (left to right) give mean and (95% confidence intervals) for issue-framing asymmetry, or model bias,
calculated as the difference between the off-diagonals in a normalised confusion matrix. A method which makes the
same proportion of mistakes when classifying texts from known framing set A or B should score 0 on this metric.
Significant departures (i.e. where we cannot reject H0:that no asymmetry exists, no score is given). Methods are
presented in blocks from top to bottom through LLM-Prompt, LLM-Paired completion, and LLM Embeddings. The
final (right-most) panel provides F1 overall scores for comparison.

References
Piotr Bojanowski, Edouard Grave, Armand Joulin, and

Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Robert M Entman. 1993. Framing: Toward clarification
of a fractured paradigm. Journal of communication,
43(4):51–58.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Men-
sch, Elena Buchatskaya, Trevor Cai, Eliza Ruther-
ford, Diego de Las Casas, Lisa Anne Hendricks,
Johannes Welbl, Aidan Clark, et al. 2022. Train-
ing compute-optimal large language models. arXiv
preprint arXiv:2203.15556.

David W Hosmer Jr, Stanley Lemeshow, and Rodney X
Sturdivant. 2013. Applied logistic regression. John
Wiley & Sons.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan,
and Geoffrey E Hinton. 1991. Adaptive mixtures of
local experts. Neural computation, 3(1):79–87.

Fred Jelinek, Robert L Mercer, Lalit R Bahl, and
James K Baker. 1977. Perplexity—a measure of the
difficulty of speech recognition tasks. The Journal of
the Acoustical Society of America, 62(S1):S63–S63.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las
Casas, Emma Bou Hanna, Florian Bressand, Gi-
anna Lengyel, Guillaume Bour, Guillaume Lam-
ple, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian,
Sophia Yang, Szymon Antoniak, Teven Le Scao,
Théophile Gervet, Thibaut Lavril, Thomas Wang,
Timothée Lacroix, and William El Sayed. 2024. Mix-
tral of experts. Preprint, arXiv:2401.04088.

Aditya Kusupati, Gantavya Bhatt, Aniket Rege,
Matthew Wallingford, Aditya Sinha, Vivek Ramanu-
jan, William Howard-Snyder, Kaifeng Chen, Sham
Kakade, Prateek Jain, et al. 2022. Matryoshka repre-
sentation learning. Advances in Neural Information
Processing Systems, 35:30233–30249.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model

9

https://arxiv.org/abs/2401.04088
https://arxiv.org/abs/2401.04088

serving with pagedattention. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Systems
Principles.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. Albert: A lite bert for self-supervised learn-
ing of language representations. In ICLR. OpenRe-
view.net.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositionality.
Advances in neural information processing systems,
26.

OpenAI. 2024a. GPT base.

OpenAI. 2024b. New embedding models and API up-
dates.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. Preprint, arXiv:1802.05365.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. 2018. Improving language under-
standing by generative pre-training.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Nathan J Russell. 2006. An introduction to the overton
window of political possibilities. Mackinac Center
for Public Policy, 4.

Gerard Salton. 1983. Introduction to modern informa-
tion retrieval. McGraw-Hill.

Karen Sparck Jones. 1972. A statistical interpretation
of term specificity and its application in retrieval.
Journal of documentation, 28(1):11–21.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
Advances in neural information processing systems,
27.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B.
Brown, Alec Radford, Dario Amodei, Paul Chris-
tiano, and Geoffrey Irving. 2020. Fine-tuning lan-
guage models from human preferences. Preprint,
arXiv:1909.08593.

A Appendix

A.1 Comparative Analysis of Classification
Methods

A.1.1 Traditional Classification
Both the tf-idf and fasttext-based classification
methods showed inferior performance to the LLM-
methods. The tf-idf approach generally performed
better than the fasttext approach, indicating that on
these datasets a keyword approach is superior to a
summed embedding vector approach. This does not
include the contextual embeddings, which are more
complex than the simple summation performed by
fasttext when embedding a sentence. The supe-
riority of LLM-based approaches was, of course,
expected, and these traditional methods were in-
cluded to provide a baseline for performance.

A.1.2 Contextual Embeddings
The significant improvement in the performance of
the contextual embedding models, compared to the
non-contextual fasttext embeddings, demonstrates
the importance of contextuality when creating em-
bedding vectors for text. We observed a significant
uplift in the performance of contextual embeddings
correlating with dataset size, far more than the up-
lift between any of the prompting methods (e.g.
seeds vs summaries). With a large enough amount
of data, generally 200 or more samples, the embed-
ding approach approached or even exceeded the
performance of GPT-4 with prompting, demonstrat-
ing the potential power of this approach. However,
the embedding approaches did significantly worse
in the few-shot learning contexts (e.g. with 10 sam-
ples per class, which is still double the number of
examples provided to the LLMs with the distilled
prompting approach).

We therefore conclude that contextual embed-
dings can be a good, and potentially cost-effective,
method for performing classification in contexts
with large amounts of training data, but they are
not as suitable when there is little training data (i.e.
in a few-shot learning context). A hybrid approach,
where one generates a training corpus with LLM
classification and then uses this to train an embed-
ding system, might be cost-optimal, but analysis of
this approach is beyond the scope of this study.

A.1.3 LLM Instruct Models
We observed general superiority from GPT-4-
Turbo, the most powerful LLM model available
(and the only model of its performance class to

10

http://dblp.uni-trier.de/db/conf/iclr/iclr2020.html#LanCGGSS20
http://dblp.uni-trier.de/db/conf/iclr/iclr2020.html#LanCGGSS20
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://platform.openai.com/docs/models/gpt-base
https://openai.com/blog/new-embedding-models-and-api-updates
https://openai.com/blog/new-embedding-models-and-api-updates
https://arxiv.org/abs/1802.05365
https://arxiv.org/abs/1802.05365
https://arxiv.org/abs/1909.08593
https://arxiv.org/abs/1909.08593

Table 2: F1 Score Summary Table: LLM Completion/Prompt methods. Boldface indicates best performance
(+/− 0.01) in a column (including GPT-4), whilst underline indicates best performance (+/− 0.01) outside of
GPT-4. Note: seeds (∗) and zero-shot (†) prompt variants shown in the table below, but are not presented in the main
paper.

Model
Variant

F1 Score

Version Abbr Climate
Change

Domestic
Violence

Misogyny Overall

A. LLM Completion/Prompt Methods

gpt-4-turbo-preview gpt4 ∗seeds 0.977 0.917 0.989 0.961
gpt-4-turbo-preview gpt4 summaries 0.953 0.870 0.976 0.933
gpt-4-turbo-preview gpt4 distilled 0.950 0.860 0.985 0.932
gpt-3.5-turbo gpt35 ∗seeds 0.935 0.868 0.986 0.930
Mixtral-8x7B-Instruct-v0.1 mxtrl ∗seeds 0.952 0.838 0.950 0.913
Mixtral-8x7B-instruct-v0.1 mxtrl k=2 0.903 0.845 0.945 0.898
Llama-2-70b-chat-hf llama k=2 0.899 0.833 0.955 0.896
gpt-3.5-turbo gpt35 summaries 0.876 0.813 0.961 0.883
Mixtral-8x7B-Instruct-v0.1 mxtrl summaries 0.921 0.802 0.925 0.883
Llama-2-70b-chat-hf llama k=1 0.924 0.786 0.936 0.882
gpt-3.5-turbo gpt35 distilled 0.882 0.798 0.957 0.879
Llama-2-70b-chat-hf llama ∗seeds 0.926 0.849 0.861 0.879
Mixtral-8x7B-Instruct-v0.1 mxtrl distilled 0.912 0.778 0.941 0.877
gpt-4-turbo-preview gpt4 †zero-shot 0.889 0.785 0.949 0.874
davinci-002 dav002 k=2 0.873 0.818 0.916 0.869
Mixtral-8x7B-instruct-v0.1 mxtrl k=1 0.910 0.754 0.943 0.869
davinci-002 dav002 k=1 0.869 0.766 0.915 0.850
gpt-3.5-turbo gpt35 †zero-shot 0.880 0.766 0.891 0.846
Llama-2-70b-chat-hf llama summaries 0.928 0.804 0.806 0.846
Mixtral-8x7B-Instruct-v0.1 mxtrl †zero-shot 0.828 0.730 0.897 0.818
Llama-2-70b-chat-hf llama distilled 0.919 0.765 0.685 0.790
babbage-002 bab002 k=1 0.828 0.723 0.810 0.787
Llama-2-70b-chat-hf llama †zero-shot 0.865 0.767 0.724 0.785
babbage-002 bab002 k=2 0.730 0.748 0.801 0.760

11

Table 3: LLM Completion/Prompt Methods Cost Analysis. Cost analysis of different LLM models based on
their performance and token usage.

Model Abbr Variant Score F1 Tokens $/Mil Cost

gpt-4-turbo-preview gpt4 distilled 0.961 0.932 260,470 10 2.6047
gpt-4-turbo-preview gpt4 summaries 0.955 0.933 184,470 10 1.8447
llama-2-70b-chat-hf llama k=2 0.920 0.896 498,091 0.9 0.4483
llama-2-70b-chat-hf llama k=1 0.920 0.882 364,063 0.9 0.3277
mixtral-8x7b-instruct-v0.1 mxtrl k=2 0.914 0.898 467,721 0.6 0.2806
mixtral-8x7b-instruct-v0.1 mxtrl k=1 0.912 0.869 341,292 0.6 0.2048
davinci-002 dav002 k=2 0.892 0.869 408,862 2 0.8177
davinci-002 dav002 k=1 0.871 0.850 297,721 2 0.5954
gpt-3.5-turbo gpt35 summaries 0.846 0.883 184,470 0.5 0.0922
gpt-3.5-turbo gpt35 distilled 0.828 0.879 260,470 0.5 0.1302
mixtral-8x7b-instruct-v0.1 mxtrl summaries 0.799 0.883 211,435 0.6 0.1269
mixtral-8x7b-instruct-v0.1 mxtrl distilled 0.788 0.877 306,635 0.6 0.1840
babbage-002 bab002 k=1 0.749 0.787 297,721 0.4 0.1191
llama-2-70b-chat-hf llama summaries 0.742 0.846 223,457 0.9 0.2011
babbage-002 bab002 k=2 0.740 0.760 409,300 0.4 0.1637
llama-2-70b-chat-hf llama distilled 0.448 0.790 319,991 0.9 0.2880

Table 4: Embedding Method Cost Analysis. Cost analysis of embedding methods based on their performance and
token usage. The embedding methods are much cheaper, but require a large source of labelled training data.

Model Abbr Variant Score F1 Tokens $/Mil Cost

text-embedding-3-large emb3l n=500 0.981 0.930 15,674 0.13 0.0020
text-embedding-3-large emb3l n=200 0.973 0.919 15,674 0.13 0.0020
text-embedding-3-small emb3s n=500 0.939 0.890 15,674 0.02 0.0003
text-embedding-3-large emb3l n=50 0.928 0.872 15,674 0.13 0.0020
text-embedding-3-small emb3s n=200 0.915 0.857 15,674 0.02 0.0003
text-embedding-3-small emb3s n=50 0.802 0.778 15,674 0.02 0.0003

12

support outputting logprobs, making it suitable for
classification in our logprob-based pipeline). This
was expected, as none of the other models claim
parity with GPT-4, and we therefore use GPT-4
as an upper bound on performance (similar to us-
ing traditional classification as a lower bound on
performance).

The other LLM instruct-capable models, includ-
ing OpenAI’s GPT-3.5-Turbo, Mistral’s Mixtral-
8x7b-Instruct-v0.1, and Meta’s LLaMA-2-70B-
Chat, went blow for blow throughout the exper-
iments, though LLaMA-2-70B-Chat demonstrated
the highest propensity for failure modes. We rec-
ommend trying several models to determine which
is most suitable. GPT-3.5-Turbo seems to be a rela-
tively dependable choice, and the relative reliability
of the OpenAI API coupled with relatively high rate
limits make it a straightforward option for running
large experiments. Mixtral-8x7B generally seems
to be as good as, if not better than, LLaMA-2-70B-
Chat, which is in line with previous experimental
results (Jiang et al., 2024).

A.1.4 LLM Paired Completion
The Paired Completion approach requires an
API which supports, in OpenAI API parlance,
“echo[ed]” logprobs (i.e. outputting the logprobs
for input tokens). For unknown reasons, OpenAI
launched and then subsequently disabled this fea-
ture on their “gpt-3.5-turbo-instruct” model, and to
our knowledge have never offered it on their Chat
API (only their “legacy” Completions API). How-
ever, they do support the feature on their legacy
completion models, including “davinci-002” and
“babbage-002”. vLLM also supports the “echo” pa-
rameter through its OpenAI-compatible API, which
we leveraged to get results from LLaMA-2-70B
and Mixtral-8x7b-v0.1. Note that none of these
models are fine-tuned for chat.

We found babbage-002 generally performed
poorly compared to davinci-002, which in turn was
outperformed moderately by the two open-source
models. The performance trend was relatively sta-
ble, with LLaMA-2-70B performing best, Mixtral-
8x7b close behind LLaMA, davinci-002 close be-
hind Mixtral, and babbage-002 quite behind the
pack.

We conjecture that this consistency in perfor-
mance occurs because the paired completion ap-
proach is less sensitive to outside influences such
as architectural changes that make model training
easier (which are continually developed as the liter-

ature expands), alignment (via mechanisms such as
RLHF), fine-tuning for instruct/chat, and the size
of the datasets used for post-training tuning steps.
It may also be that these problems (which were de-
signed for use with davinci-002 and babbage-002)
are too easy for the newer, more powerful models,
and that more complex experiments would tease
out more distinctions between them. It should be
noted that the performance trend places the models
in order of their number of parameters (although
the parameter counts of davinci-002 and babbage-
002 are only estimated, we suspect that the models
are indeed placed in correlation with their parame-
ter count).

A.2 Model Bias and Confusion Matrices
Whilst accuracy and recovery metrics speak to the
overall performance of a given approach on the
issue-framing task, an important additional char-
acteristic of an approach is to ask whether, when
making classification mistakes, the approach fails
more often in one issue direction versus another. In
other words, does the approach demonstrate bias?

To explore bias in the modelling approaches,
we compute the difference in proportions of ‘off-
diagonal’ confusion matrix behaviour. In a stan-
dard 2-by-2 confusion matrix approach we com-
pare ground-truth to model inference. Model deci-
sions which align with the ground truth (e.g. a ‘pro-
science’ synthetic text, is assigned ‘pro-science’ by
the method) contribute to the main diagonal of the
confusion matrix. Off diagonals then capture the
proportion of times that the model makes a mistake.
If the model is unbiased, the frequency of mistakes
made between both sides of the issue-framing de-
bate should be similar.

To account for this, and knowing that our syn-
thetic data has equal numbers of examples on each
‘side’ of an issue framing, we develop a simple
difference in off-diagonal proportions: fn/(tp +
fn)−fp/(tn+fp), i.e the ratio of false negatives
(fn) to all true positive cases, minus the ratio of
false positives (fp) to all true negative cases. If no
bias exists, this metric should be 0.

Figure 4 presents the results of this bias calcula-
tion across each different configuration on the three
main datasets.

While we observed significant differences in per-
formance between models and classification tech-
niques, we also observed differences in the bias
displayed by models, and even the same model
with different techniques. This seems to be dataset-

13

dependent.
In general, the embedding-based approaches ap-

pear to be the most robust to bias, with no statis-
tically significant bias found across the three ex-
perimental datasets for any embedding-based con-
figuration. The other two LLM-based approaches
demonstrated bias in some scenarios. It may be the
case that the k = 2 configuration of the pairwise
completion method reduces bias compared with
the k = 1 approach, but we do not have enough
evidence to say this with any certainty.

However, it is clear that the more perfor-
mant LLM paired completion methods (mxtrl-k=2;
llama-k=2) show significantly less bias than the
performant LLM prompting approaches, even GPT-
4.

It remains for other studies to examine what
might be driving the sources of these biases. For
instance, bias can arise due to bias in training data,
biased language modelling, or bias in model align-
ment (a refinement process applied to models like
ChatGPT and GPT-4 to improve their task com-
pliance and reduce toxicity). Nevertheless, this
exercise demonstrates that, if one wishes to lever-
age high accuracy and low bias, the stronger LLM
paired completion methods present (e.g. llama-
k=2) present as likely balanced candidates.

A.3 Computational Complexity and Resource
Requirements

Both the paired completion and prompting ap-
proaches increase time complexity linearly with
the number of classes. The paired completion is
non-comparative, in that a new set of framings
can be added independently of past/future framing
sets, and thus the compute scales linearly with the
number of framings (though it might scale faster
than linearly with the number of framings within
the framing set if using k > 1, as the number of
comparisons for a framing set of size n is O(nk)).

The prompting approach only requires a single
call to the model, regardless of how many classes
are used, but the number of tokens used within the
call will scale linearly with the number of classes.
There will be a large constant term in the size of the
input prompt corresponding to an explanation of
the problem, the expected output, and the required
output format, meaning that for smaller numbers
of classes, the relative increase in prompt size can
be small. However, the difficulty of the task also
increases with the number of classes, and we con-
jecture that the paired completion approach will

scale better to a very large number of classes, as
the model only needs to “consider” one class (i.e.
one priming sequence) at a time.

From a practical perspective, the OpenAI API
has a seemingly little-known feature that allows
calls to the Completions API to be batched (thus
including multiple texts in a single API call, and
receiving all the results for those texts in a single
response to the API call). We found this a use-
ful speed boost (by a factor of 20x) when using
babbage-002 and davinci-002, because we were
primarily rate-limited by API calls rather than to-
kens used. However, our experience is that other
OpenAI-compatible vendors tend not to implement
this feature, and it’s unclear if there would be time
savings from this anyway (as they might not exe-
cute the calls in parallel in their backend).

A.4 Cost
GPT-4 proved by far the most expensive model,
which was the expected result and the price (in
a quite literal sense) paid for its excellent per-
formance on all benchmarks. Other models var-
ied in cost, but as demonstrated in Figure 3, the
paired completion approach with LLaMA-2-70b
and Mixtral-8x7b proved very cost-effective for
their performance. Trade-offs can be made based
on requirements and funding availablility, but all
LLM-based approaches were significantly more
expensive than the embedding approaches. These
require sufficient data (up to two orders of magni-
tude more than the LLM approaches), but proved
competitive and cost-effective given enough data.

14

