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Abstract

Ensuring street food safety in developing countries is cru-
cial due to the high prevalence of foodborne illnesses. Tra-
ditional methods of food safety assessments face challenges
such as resource constraints, logistical issues, and subjective
biases influenced by surveyors personal lived experiences,
particularly when interacting with local communities. For in-
stance, a local food safety inspector may inadvertently over-
rate the quality of infrastructure due to prior familiarity or
past purchases, thereby compromising objective assessment.
This subjectivity highlights the necessity for technologies that
reduce human biases and enhance the accuracy of survey data
across various domains.

This paper proposes a novel approach based on a combina-
tion of Computer Vision and a lightweight Visual Large Lan-
guage Model (VLLM) to automate the detection and analysis
of critical food safety infrastructure in street food vendor en-
vironments at a field experiment in Kolkata, India. The sys-
tem utilises a three-stage object extraction pipeline from the
video to identify, extract and select unique representations of
critical elements such as hand-washing stations, dishwashing
areas, garbage bins, and water tanks. These four infrastruc-
ture items are crucial for maintaining safe food practices, ir-
respective of the specific methods employed by the vendors.
A VLLM then analyses the extracted representations to assess
compliance with food safety standards. Notably, over half of
the pipeline can be processed using a user’s smartphone, sig-
nificantly reducing government server workload. By lever-
aging this decentralised approach, the proposed system de-
creases the analysis cost by many orders of magnitude com-
pared to alternatives like ChatGPT or Claude 3.5. Addition-
ally, processing data on local government servers provides
better privacy and security than cloud platforms, address-
ing critical ethical considerations. This automated approach
significantly improves efficiency, consistency, and scalability,
providing a robust solution to enhance public health outcomes
in developing regions.

Introduction

Street food safety in developing countries is a significant
concern due to its direct impact on public health. The World
Health Organization reports over 600 million cases of food-
borne illnesses and 420,000 deaths annually from contami-
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nated food, underscoring the urgent need for effective mon-
itoring systems (World Health Organization 2020). Tra-
ditional methods, primarily based on human surveys, are
time-consuming, prone to biases, and often hindered by the
high data collection costs and personnel training (Althubaiti
2016). Street food, with all the associated issues, is nonethe-
less a crucial source of employment and supply of food for a
large proportion of the population (Daniele, Mookerjee, and
Tommasi 2021).

This paper explores integrating deep learning and com-
puter vision technologies with visual large language mod-
els (VLLMs) to address these challenges and create an au-
tomated, scalable solution for assessing street food safety.
Specifically, using YOLO for real-time object detection en-
ables the identification of critical features within food ven-
dor environments, such as hand-washing stations, dishwash-
ing areas, garbage bins, and water tanks. Food safety is im-
possible without available infrastructure, especially in a de-
veloping context (Ogwu, Izah, and Ntuli 2024). These de-
tected objects are then analyzed by VLLMs, which provide
a detailed assessment of their compliance with food safety
standards.

To the best of our knowledge, we are the first to com-
pare large-scale social science survey results with AI models
to fill out the survey. This approach enhances the accuracy
and speed of safety assessments, removes biases from hu-
man surveys, and provides a cost-effective, mobile-friendly
solution accessible in resource-constrained settings.

Related Work

Human-based survey The data utilized in this study was
collected through a rigorously designed field survey funded
by the Food and Agriculture Organization of the United
Nations (FAO), a continuation of a long-running field sur-
vey (Brown and Tommasi 2024). The survey, conducted by
experienced personnel, involved traditional social science
methodologies, including structured questionnaires and on-
site assessments of food stand infrastructure in Kolkata, In-
dia. This survey is a follow-up to a large-scale field ex-
periment conducted two years prior. Such surveys are crit-
ical for informing national and international policies to en-
hance food safety practices, as effective food safety manage-
ment requires a systemic approach; inspecting every food
stand individually is impractical. In this iteration, the sur-



vey maintained the same high standards, including the use
of highly trained surveyors, culturally appropriate questions,
and expert-led translations. However, a significant addition
was made: surveyors were instructed to capture photos and
videos of the inspected sites while completing the survey.
This innovation allows the survey process to be replayed of-
fline, with the potential for further analysis through Al sys-
tems.

ChatGPT 40 The evolution of large language models
(LLMs) has driven significant progress in natural lan-
guage processing (NLP), with OpenAI’s GPT series setting
new benchmarks in language understanding and generation.
GPT-4, an extension of GPT-3, stands out for its improved
contextual comprehension, coherence, and ability to gen-
erate human-like text (Brown et al. 2020). Trained on di-
verse datasets, GPT-4o excels in tasks such as text comple-
tion, summarization, question answering, and basic reason-
ing. Beyond text generation, GPT-40’s architecture also sup-
ports multimodal tasks, making it effective in analyzing and
interpreting textual data in conjunction with visual contexts
like image and video descriptions.

Google Paligemma Vision-Language Models (VLMs)
have seen significant advancements, beginning with foun-
dational works like CLIP (Radford et al. 2021) and ALIGN
(Jia et al. 2021), which established the potential of large-
scale image and text embeddings. Subsequent models such
as PaLl (Wang et al. 2022), PaLI-X (Wang et al. 2022), and
PalLM-E (Wang et al. 2022) further expanded VLM capabil-
ities through generative encoder-decoder architectures, ex-
celling in tasks like image classification, captioning, and
VQA. Recent models, including Flamingo (Alayrac et al.
2022) and BLIP-2 (Li et al. 2023), introduced instruction
tuning to enhance user interaction and task performance.
PaliGemma, the focus of our study, represents the latest evo-
lution in VLMs, integrating the SigLIP-S0400m vision en-
coder with the Gemma-2B language model to deliver com-
petitive performance across a broad range of tasks with a
smaller, more efficient architecture.

Florence-2 Florence-2, introduced by (Xiao et al. 2024),
stands out as a novel vision foundation model designed to
handle a variety of vision and vision-language tasks through
a unified, prompt-based representation. This model was
trained on the extensive FLD-5B dataset, consisting of 5.4
billion annotations on 126 million images, and demonstrated
remarkable capabilities in zero-shot and fine-tuning scenar-
ios. The underlying architecture of Florence-2 integrates a
sequence-to-sequence structure, allowing for versatile task
performance ranging from object detection to captioning and
segmentation.

Current Challenges in Food Safety Assessments Food
safety is a global public health issue, particularly pro-
nounced in developing countries where contamination from
biological, chemical, and physical hazards can lead to vari-
ous diseases (World Health Organization 2020). Traditional
human survey methods have long been used to gather data
on food safety, focusing on consumer awareness, vendor
practices, and socioeconomic factors influencing food safety

behaviors. However, these methods face several signifi-
cant limitations, including high costs, logistical challenges,
and data inconsistencies. They are resource-intensive, time-
consuming, and prone to respondent biases and inaccuracies,
which can further exacerbate weak empirical knowledge and
institutional fragmentation. Additionally, these surveys may
fail to adequately represent remote or underserved popula-
tions, leading to skewed data that does not accurately reflect
the food safety landscape, ultimately hindering comprehen-
sive food safety interventions (Althubaiti 2016).

Visual Language Models

Visual Language Models (VLMs) combine visual percep-
tion with natural language processing to analyze and inter-
pret visual and textual data simultaneously. VLMs can auto-
matically recognize and describe food safety issues by an-
alyzing images of food products and facilities (Ma et al.
2024). This integration of image recognition and natural lan-
guage processing allows VLMs to provide detailed and ac-
curate assessments quickly, without the biases and fatigue
that can affect human surveyors (Radford et al. 2021).

Object Detection: YOLOvV10

Object detection has seen significant advancements, with
the YOLO (You Only Look Once) series leading due to its
balance of efficiency and accuracy. Starting with YOLOv1
(Redmon et al. 2016), subsequent iterations like YOLOvV2
and YOLOV3 introduced innovations such as batch normal-
ization and multi-scale predictions (Redmon and Farhadi
2017),(Redmon and Farhadi 2018), while YOLOv4 and
YOLOVS further advanced the field with CSPNet and novel
data augmentation techniques (Bochkovskiy, Wang, and
Liao 2020; Jocher 2022). The latest, YOLOvV10, features
NMS-free training and an optimized model design, achiev-
ing state-of-the-art performance (Wang et al. 2024). Our
work focuses on YOLOvVI10-N, a specialized variant within
the YOLOv10 family, optimized for scenarios requiring
minimal latency and efficient parameter use. Despite its
compact design, YOLOvV10-N maintains competitive accu-
racy, outperforming other lightweight models on bench-
marks like COCO, making it particularly suited for real-time
object detection in resource-constrained environments, such
as the dynamic conditions of street food markets, where it
effectively supports enhanced food safety monitoring.

Feature Extraction With Deep Learning

Deep learning models have revolutionized feature extrac-
tion from images, enabling the capture of high-level seman-
tic information. Among these models, Convolutional Neural
Networks (CNNs) such as VGGNet, ResNet, and Inception
have been widely used for their ability to learn hierarchi-
cal features. MobileNet, in particular, has gained attention
for its efficiency and effectiveness in mobile and embedded
vision applications due to its depthwise separable convolu-
tions, which reduce computational complexity without com-
promising accuracy (Howard et al. 2017). Other notable fea-
ture extractors include DenseNet, which utilizes dense con-
nections between layers to improve feature propagation and



reduce vanishing gradients (Huang et al. 2017). These mod-
els have been successfully applied to various tasks, including
object detection (Redmon et al. 2016), image segmentation
(Ronneberger, Fischer, and Brox 2015), and image classifi-
cation (Simonyan and Zisserman 2014).

Dataset

Three datasets are used in the framework, each with its
specifics and processing procedures.

Field survey Our study utilized a multi-modal approach,
integrating traditional survey results with video and image
inputs for comprehensive street food safety assessment. To
evaluate the quality of the available infrastructure, we de-
vised a series of binary (yes/no) questions, such as, "Is the
water storage tank cracked, or does the tank have holes?" see
the appendix for the complete questions. These questions
served as benchmarks to assess and compare the perfor-
mance of various Visual Large Language Models (VLLMs).
This approach allowed us to gauge the models’ accuracy
and reliability in identifying infrastructure issues, leverag-
ing visual data and survey responses. Our study analyzed
a dataset comprising 7,000 images and 7,510 videos, with
responses from 244 out of 328 selected vendors. After ap-
plying our inference pipeline, we extracted an additional av-
erage of 20 distinct images per video. Given the fixed survey
design, which includes field experiments conducted consis-
tently over several years, we maintained the original vendor
list for continuity, even though some vendors have report-
edly discontinued operations.

Yolo The YOLO dataset utilized the same images gener-
ated by the human survey. The training-validation split was
conducted by allocating the first 200 vendors with the most
images to the training set and the remaining 50 to the vali-
dation set. This approach ensured a wide variety of images
for training and a diverse range of facilities in the validation
set. Initial labelling was performed manually, including the
specification of correct bounding box coordinates and class
names. The dataset comprised approximately 7000 images
for the training set and around 1900 images for the valida-
tion set across four classes.

Data augmentation. In our experimental setup, we made
specific adjustments to the standard data augmentation pa-
rameters used in YOLOv10. To enhance processing effi-
ciency on mobile and edge devices, the image resolution
was set to 640 pixels, balancing performance and compu-
tational load. We applied Mosaic and MixUp techniques for
augmentations, each with a 50% probability and shear aug-
mentation with a 25% probability. These choices were em-
pirically optimized for our specific use case, where shear
augmentation was particularly beneficial in simulating di-
verse angles and perspectives, which is critical given the
varied camera angles in our video dataset. All other data
augmentation parameters were maintained as per the default
YOLOV10 configuration.

Feature extractor and VLLMs training set The primary
advantage of a lightweight VLLM is its compact size, which
limits its analytical capabilities compared to more robust

models like ChatGPT-4 or LLaMA 3. Therefore, the key ob-
jective in preparing data for small VLLMs is to maximize
the elimination of noise (irrelevant data) to enhance model
performance. Additionally, task-specific information needs
to be incorporated, such as analyzing the cleanliness of the
area surrounding the object. To achieve this, the bounding
boxes of detected facilities were expanded by 25%, and all
object representations were extracted from the images, and
rescaled to ensure one dimension was 640 pixels. This ap-
proach removes irrelevant data, leaving only the object and
a small portion of its surrounding area for accurate analysis.

Data augmentation. Firstly, images were resized to
224x224 pixels. Next, to enhance the robustness of the
feature extractor and VLLM models, data augmentation
techniques were employed during training to account for
varying lighting conditions encountered during the surveys.
These conditions ranged from bright, sunny days to over-
cast, cloudy weather, affecting the recorded footage’s bright-
ness and visibility. To address these variations, the follow-
ing augmentation methods and parameters were applied: a
left-right flip with a 50% probability, an up-down flip with
a 50% probability, random brightness adjustments with a
+10% delta, random contrast adjustments within an 80% to
110% range, random hue adjustments with a +10% delta,
and random saturation adjustments within an 80% to 110%
range. These augmentations ensured the models could gen-
eralize effectively across different environmental conditions.

VLLMs test set The test set used to evaluate the perfor-
mance of the VLLMs comprised images from 50 vendors
that were not included in the training set, as previously de-
scribed. No validation set was used during the training pro-
cedures to prevent data leakage. Similar preprocessing steps
were applied to the test set images as with the training set:
facilities were detected in each image and cropped with a
bounding box enlarged by 25%, then rescaled to ensure the
largest dimension was 640 pixels. No data augmentation was
applied to the test set images.

Methodology

Brief description The proposed pipeline (Fig. 1) initiates
by capturing the video stream from a smartphone or per-
sonal camera. Once the recording is complete, the video can
be analyzed on a smartphone or PC/laptop. Initially, the sys-
tem calculates optical flow and selects sharp frames while
discarding non-sharp ones, such as during camera reloca-
tions. These sharp frames are then batched for recognition
using YOLOV10 object detection, identifying and locating
objects. Identified objects are batched again for feature ex-
traction, organized by object class (e.g., hand washing sta-
tions, garbage bins) to ensure robust analysis from mul-
tiple perspectives (angles). MobileNetV3 processes these
batches to extract features represented by a feature vector
of 64 neurons. Subsequently, these features are clustered
into five unique representations per class, ensuring diverse
representations by selecting different instances filmed from
various angles. Finally, these clustered images are analyzed
by VLMs for compliance with food safety standards, using
the captured representations to assess and ensure adherence.



This integrated approach significantly minimizes the com-
putational load on government servers, enhances accuracy
and security and scales effectively for widespread deploy-
ment in resource-constrained environments.

VLLMs

Pipeline The proposed pipeline begins by capturing the
video stream from a smartphone or personal camera. Once
the recording is finished, the video can be analyzed either on
the smartphone or any PC/laptop that supports the ONNX
framework (mobile device friendly) The video analysis con-
sists of the following steps:

1. The system calculates optical flow and selects sharp
frames, discarding non-sharp frames (e.g., during cam-
era relocation).

2. Each sharp frame is fed into YOLOv10 object detection,
where objects are recognized and their location defined.

3. Objects are grouped by class (e.g., hand washing sta-
tions, garbage bins) into separate lists for batch feature
extraction. This step identifies unique representations of
objects for each category — i.e., different instances of
the same category (e.g. several garbage bins) and their
unique views (from various angles).

4. MobileNetV3 extracts their features in batches for each
list from the previous step. The feature vector for each
object consists of 64 neurons.

5. All the extracted features are then clustered into 5 clus-
ters to obtain five unique representations for each cate-
gory by calculating the closest feature set to each cluster
center. Different instances for each category filmed from
various angles are selected.

6. The resulting set of images (the number of categories in
the video multiplied by 5) is sent to the VLLM.

7. By category, VLLM analyses the given set of images.

The survey data consists of yes/no/unknown responses,
which lack the detailed information necessary for training
VLLMs. Therefore, to generate explanations and reasoning
for the answers, we utilized ChatGPT4o. This service offers
accurate answers accompanied by concise reasoning, adher-
ing to the provided answer template.

ChatGPT-4 Analysis Textual Data Processing: The tex-
tual data from the questionnaires was preprocessed and fed
into ChatGPT-4. The model analysed the responses and pro-
vided insights on street food safety practices. Image and
Video Analysis: Selected images and video frames were de-
scribed and analyzed using ChatGPT-4. The model gener-
ated textual descriptions and answered specific survey ques-
tions about each visual input. Comparison of Insights:
The responses generated by ChatGPT-4 were then compared
with the human survey responses to evaluate the model’s ac-
curacy and reliability.

Google Paligemma The core of our approach involves
fine-tuning PaliGemma, a robust Vision-Language Model,
to specialize in answering survey questions. It was trained
on the answers previously extracted by ChatGPT4o.

PaliGemma’s architecture consists of a SigLIP image en-
coder and a Gemma-2B language model, providing a solid
foundation for our fine-tuning tasks.

Image Encoder: SigL.IP-So400m The SigLIP-S0400m
model is a vision encoder optimized for shape recognition
and contrastive learning. It processes images into a sequence
of 400 million tokens, which are then fed into the language
model. This encoder has shown state-of-the-art performance
in various vision tasks, making it an ideal choice for our
VLM.

Language Model: Gemma-2B The Gemma-2B is a
decoder-only language model with 2 billion parameters,
built using advanced autoregressive techniques. It generates
coherent and contextually relevant text based on the input
image and text prompts provided by the encoder.

Integration of Image and Text Tokens The image to-
kens generated by the SigLIP encoder are projected into the
same dimension as the Gemma-2B tokens through a linear
projection layer. These tokens are concatenated with text to-
kens from the SentencePiece tokenizer, forming a unified se-
quence for the language model to process.

Florence-2 Florence-2 employs a unified sequence-to-
sequence learning paradigm to handle various vision tasks.
The model’s architecture integrates an advanced vision en-
coder, DaViT (Ding et al. 2022), with a multi-modality
transformer-based encoder-decoder. The vision encoder pro-
cesses input images into visual token embeddings, combined
with text embeddings derived from task-specific prompts.
The multi-modality encoder-decoder processes this com-
bined input to generate text-based outputs. As Paligemma
it was also trained on the answers provided by ChatGPT4o.

Surveyor (Inference) Pipeline
YOLOv10

Fitness The fitness function in YOLO models, a compos-
ite loss function, is vital to optimize object detection accu-
racy. It integrates localization, confidence, and class proba-
bility losses to measure the discrepancy between predicted
and ground truth bounding boxes and class probabilities.
Minimizing this function improves the model’s object de-
tection and classification performance. The key evaluation
metrics are mAP50 and mAP50-90. mAP50 measures mean
Average Precision (mAP) at a 50% IoU threshold, while
mAP50-90 averages mAP across IoU thresholds from 50%
to 90%, offering a broader evaluation. YOLO 10 uses fit-
ness weights [0,0,0.1,0.9] for Precision, Recall, mAP50, and
mAP50-90, respectively, emphasizing mAP50-90 in perfor-
mance evaluation.

Loss Function The loss function in YOLOvV10 is designed
to optimize the balance between localization accuracy and
classification performance. It comprises three main compo-
nents: the bounding box regression loss, the objectness score
loss, and the classification loss.

Bounding Box Regression Loss: This component mini-
mizes the error in predicting the coordinates of the bound-
ing boxes. It uses a smooth L1 loss, which is less sensitive
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to outliers than the standard L2 loss. The regression loss is
given by:
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where t,,%,, ., tn are the predicted coordinates and di-
mensions of the bounding box, and fz,fy,fmfh are the
ground truth values.

Objectness Score Loss: This component penalizes the
model for incorrect predictions about the presence of an ob-
jectin a grid cell. It uses binary cross-entropy loss to achieve
this:
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where poy; is the predicted probability of an object being
present in the bounding box.

Classification Loss: This component addresses the error
in predicting the class of the detected object. It also uses a
cross-entropy loss:
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where p, is the true class probability and p,. is the predicted
class probability.

The overall loss function is a weighted sum of these three
components:

L= Aregﬁreg + )\obj L:obj + )\clsﬁcls

where Areg, Aobj, Acls are the weights for each component.

Facility Representation Extraction From Video
Feed

To extract distinctive representations of the facilities cap-
tured in the video feed, we adopted an approach inspired
by the method introduced by (Chernikov et al. 2022). The
method has been tailored to suit our specific requirements
for analyzing the video content.

Feature extraction: MobileNet. MobileNetV3 intro-
duces an optimized neural network architecture for mo-
bile and resource-constrained environments, leveraging ad-
vanced techniques like neural architecture search (NAS)
and NetAdapt to achieve an optimal balance between ac-
curacy and efficiency. The architecture employs a combina-
tion of inverted residual blocks with linear bottlenecks, en-
hanced by squeeze-and-excitation modules and an innova-
tive h-swish activation function, which is more efficient for
mobile CPUs. The network is designed with two versions,
MobileNetV3-Large and MobileNetV3-Small, targeting dif-
ferent resource levels. MobileNetV3 demonstrates superior
performance in tasks such as image classification, object de-
tection, and semantic segmentation, outperforming previous
models like MobileNetV2 and MnasNet, while significantly
reducing latency and computational costs, making it highly
suitable for mobile applications (Howard et al. 2019).

Feature extraction is performed using the penultimate
dense layer of the model, which consists of 64 neurons and
follows the global average pooling layer. Consequently, each
image produces two outputs during the inference stage: a
class probability vector and a feature vector.

Feature Clustering with KMeans After recognizing ob-
jects from the video and extracting features, we reduce the
number of images sent to the VLLM by clustering them, tar-
geting 5 per class. K-Means clustering, chosen for its sim-
plicity and effectiveness, partitions data into k clusters by
minimizing within-cluster variance. It starts with initializ-



ing k centroids, assigning data points to the nearest centroid,
and iterating until convergence. We use K-Means++ initial-
ization to improve clustering by better centroid placement
(Arthur and Vassilvitskii 2007).

Experimental Study

Hardware setup Given the lightweight nature of the se-
lected Vision-Language Models (VLMs), the computational
hardware requirements for our experiments were modest.
The training was conducted on an AMD Threadripper
3955WX with 128 GB of RAM and dual NVidia GeForce
RTX 4090 GPUs. For inference, we utilized a system
equipped with an Intel 12600K processor, 64 GB of RAM,
and a single NVidia GeForce RTX 3090 GPU.

Google PaliGemma Fine-Tuning We fine-tuned
PaliGemma on our survey dataset to enhance its abil-
ity to generate accurate answers from visual and textual
inputs. Key hyperparameters included a batch size of 8§,
30,000 training steps, and a maximum of 128 new tokens,
using a 224-pixel checkpoint. Fine-tuning was done in
JAX using the bfloatl6 (bf16) data type, which balances
range and precision. Both Vision (img/) and attention layers
(Ilm/layers/attn/) were set as "trainable."

Florence-2 For a fair comparison, the fine-tuning pro-
cess for Florence-2 was closely aligned with the approach
used for Paligemma. However, there were a few key differ-
ences. We utilized the same training and validation datasets,
maintaining an image resolution of 224x224 pixels. Unlike
Paligemma, which employed the SGD optimizer, we opted
for AdamW, ensuring more stable and faster convergence.
Additionally, rather than using JAX, as in Paligemma’s case,
our training was conducted using PyTorch. Another distinc-
tion was the use of the float16 data type during training,
which contributed to efficient computation. We selected a
linear learning rate scheduler without warmup and trained
the model over 30 epochs. Due to Florence-2’s slightly
larger complexity compared to Paligemma, we were limited
to batches of up to 6 samples during training. Finally, we set
the max_new_tokens parameter to 128 tokens.

YOLOv10

Fitness In our framework, object detection constitutes the
most critical step of the pipeline. Incorrect detection, such
as misclassifying an object, leads to the VLLM analyzing an
erroneous object, potentially resulting in harmful outcomes.
Given that we work with videos and have an ample supply
of images, the primary objective in object detection is to en-
sure the correct classification of images, emphasizing Pre-
cision over Recall. Consequently, we modified the fitness
function of the YOLO training pipeline from [0,0,0.1,0.9]
to [0.5,0,0.1,0.5]. This adjustment prioritizes Precision, en-
suring that all detected objects are correctly classified and
suitable for subsequent VLLM analysis, while a reduction
in Recall is acceptable in our context.

Train hyperparameters We trained our YOLOv10 model
on the COCO dataset, optimizing the loss function described
in the Methodology section. As mentioned, our focus in this

study is on maximizing precision over recall. To achieve
the highest possible precision, we significantly increased
the weight of the classification loss in the total loss func-
tion, raising it from 0.5 to 6. Concurrently, we reduced the
weight of the box loss component from 7.5 to 1. These ad-
justments were made to fine-tune the model’s performance
towards our precision-centric objectives. We employed the
Stochastic Gradient Descent (SGD) optimizer for optimisa-
tion, which is known for its superior generalization capabil-
ities despite its relatively slower convergence. The SGD pa-
rameters were kept at their standard values, with a learning
rate 1E-2 and momentum set to 0.97. The model underwent
training for 500 epochs to ensure adequate learning and per-
formance stability.

Feature extractor The model was trained over 5000
epochs with a batch size of 1024 samples, utilizing the
SGD optimizer. To enhance generalization, Label Smooth-
ing with a coefficient of 0.1 was applied. A dropout layer
with a coefficient of 75% was incorporated immediately af-
ter the Global Average Pooling layer, before the feature ex-
traction layer, to combat overfitting. Additionally, a Reduce
on Plateau Learning Rate scheduler with a multiplier of 0.66
and a patience of 150 epochs was employed to improve gen-
eralization further. Since the dataset was pre-balanced, stan-
dard categorical cross-entropy was used as the loss function.

Results
Inference Pipeline

A significant challenge in our work stemmed from the un-
regulated and highly variable appearance of facilities, which
differs considerably from vendor to vendor. This variation
becomes even more pronounced when a single vendor op-
erates multiple entities of the same facility type that vary in
appearance, such as garbage bins, ranging from plastic bags
to repurposed water tanks. Despite this variability, modern
computer vision architectures have performed well in ad-
dressing this task.

Object detection Fig. 2A demonstrates that the model
achieves high precision across all classes, effectively min-
imizing the misclassification of items as other categories.
This high precision, while resulting in some underclassifi-
cation of items as background, is a strategic trade-off that
aligns with our primary goal: ensuring that when items are
detected, they are not misclassified. This approach signif-
icantly reduces false positives, a critical factor in further
VLLM analysis.

Features extractor As it seen in Fig. 2B, MobileNetV3
demonstrated strong performance despite the variability in
representations. Some misclassification occurred, particu-
larly between water tanks and hand washing stations, which
is understandable given that hand washing stations often use
similar water tanks on top of them. However, the model’s
high accuracy is not critical in this context, as its primary
role is to differentiate the most prominent representations of
the facilities.
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Figure 2: (A) Performance metrics of YOLOV10 object detection; (B) Resulting performance metrics of the feature extractor/-

classifier.

Extracted Representation Analysis With VLLMs

VLLMs were evaluated on a test set comprising 258 images
across four facility types, with a total of 864 questions ad-
ministered.

Full test set results with an expert supervision Fig. 3
demonstrates the final results obtained for 3 Vision LLM
models on a LLM test set: ChatGPT, Paligemma, Florence-
2. The results were obtained by comparing human sur-
vey data with predictions of the ChatGPT and fine-tuned
VLLMs. Cases where there were disagreements between the
human survey and ChatGPT were double-checked and cor-
rected by a field expert. The expert did not control cases with
an agreement between the survey team and ChatGPT4o.
Therefore, the ground truth in the experiment was a mixture
of the survey team’s opinion (in cases with full agreement)
and an expert opinion (in cases with disagreements). Chat-
GPT4o slightly outperforms the other VLLM models, with
Paligemma and Florence?2 closely following in overall per-
formance metrics.

Disagreements A total number of cases with disagree-
ment between the survey team and ChatGPT4o was 250 out
of 780. In this experiment, the ground truth was solely an
expert opinion. We removed cases with a full agreement to
investigate the performance of the survey team, ChatGPT40
and our fine-tuned models. Fig. 3A demonstrates that the hu-
man survey team had the lowest scores across all evaluation
metrics. The figure demonstrates that VLLM models, par-
ticularly Florence2, generally outperform the human survey
team in terms of accuracy, precision, recall, and F1 score,
highlighting the effectiveness of automated approaches in
food safety assessment.

Inference time The inference speeds were measured us-
ing the hardware setup detailed in the Methodology section.

The maximum batch size that can be processed on a sin-
gle NVIDIA GeForce RTX 3090 varies by model. In our

evaluation, ChatGPT took 30 minutes for inference, while
PaliGemma demonstrated faster performance with larger
batch sizes, achieving 154.24 seconds at a batch size of 16.
In contrast, Florence2 was most efficient at smaller batch
sizes, with a time of 178.42 seconds at a batch size of 6.

Conclusion

We have developed a robust framework for automated street
food safety surveys, which effectively mitigates biases, re-
duces reliance on domain expertise, and can be implemented
by surveyors with minimal training. By primarily utilizing
edge/mobile devices, this framework minimizes the need
for robust infrastructure, leading to significant cost sav-
ings. While errors are inevitable in manual and automated
approaches—illustrated by 4A, where a human inspector
made an error, and 4B, where the Al model misinterpreted
height—our system’s design allows continuous optimization
and improvement. Although we retained the AI model’s er-
ror in our analysis to highlight potential pitfalls, future opti-
mization will address such issues. The framework’s scalable
design enables broad geographical application and enhanced
analytical depth, making it adaptable for future expansions
in the list of analyzed facilities. This tool is intended to em-
power the same survey team to assess an expanded set of
food vendors in subsequent surveys, offering local govern-
ments a comprehensive understanding of infrastructure gaps
in various city areas. As a future direction, we aim to scale
this procedure to 100 cities across India, evaluating the re-
quirements for expansion. Ultimately, this framework’s in-
ference allows street food surveyors to conduct real-time,
automated assessments via smartphones, potentially reduc-
ing the prevalence of foodborne diseases significantly.
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Appendix

English Question

Bengali Question

Is the hand washing facility at least 1 meter above
ground level?

3% @R AR« R 9167 @ SR am=?

Does the hand washing facility have a 1id? 3% (G IIZT 5 o1t Wiex?

Is there soap available and maximum an arm’s G {5 AR 2I1ST TIT QI B (AT ARTS 9
length away from the tap? W‘@T‘Zﬁ{@ YI?

Is water after washing hands collected in some con- | &l AR FFT I ?

tainer?

Is the water storage tank covered by a 1lid? BIeT Q0 GIsat B Ao ?

Is the water storage tank cracked or does the tank | BISfG <5 FIGw I BITE 15 Wcx?

have holes?

Is the dish-washing station at least 1 meter above SRR GBI 5 B BEIT TAE?

ground level?

Are the dirty plates, pots, cutlery waiting to be
washed on the ground or floor?

(I (AT, BTG, DI 1< NITGCO T (NRITO (T
G ST PACR?

Are the dirty plates, pots, cutlery waiting to be
washed in a container protected from the ground?

RJT (AT, i@, FoAIS < J6 AT 3o a3
AT (IR ST S FACR?

Do the buckets containing water have smooth sur-
faces?

S [ Ty Do aMM=?

Is the ground around the dish-washing station free
of debris?

@RI GHXIER BRI FIfS 5 RO J&?

Is there more than one water bucket around the
dish-washing area?

oI 5 aifas fs?

Is there soap or detergent available and maximum

AR IV fTOIACSTS ANST I Q32 GBI (AT

an arm’s length away from the station? AT QT S Y&?
Are the garbage bins made of hard material? el 1w Somme e cofa?
Do the garbage bins have a smooth top area? Raaftm o o7 A QA=Y HICR?

Are there animals/insects in or around the garbage
bins?

SIS J&S AN TR 5 R/ oot s ?

Does the area around the garbage bins have stand-
ing water?

TR Ao 5 1S o wnem?

Are birds, insects, rodents, or other animals present
at the stall?

5B 15 oMY, (NIRRT, 39 I 7T A1 Aicm?

Table 1: Matched Questions in English and Bengali

Note: The English translation has been slightly adapted to achieve good zero-shot results with LLMs.




